On the Series Transformation Formula of Boyadzhiev

R. Cruz-Santiago, J. López-Bonilla* \& R. López-Vázquez
ESIME-Zacatenco, Instituto Politécnico Nacional, México

Abstract

We exhibit an elementary deduction of Boyadzhiev's formula which turns power series into series of functions.

Keywords: Stirling numbers, Euler operator, Dobinski's relation, Bell numbers.

1. Introduction

Boyadzhiev [1, 2] obtained the expression:

$$
\begin{equation*}
Q \equiv \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} \sum_{j=0}^{k} S_{k}^{[j]} x^{j} g^{(j)}(x)=\sum_{r=0}^{\infty} \frac{g^{(r)}(0)}{r!} f(r) x^{r} \tag{1}
\end{equation*}
$$

where $f(z)$ is an entire function, $S_{k}^{[j]}$ are the Stirling numbers of the second kind $[3,4], g(z)$ is an analytic function in a region around the origin, and x belongs to this region. We observe that (1) turns power series into series of functions.

In Sec. 2 we give an elementary proof of (1) and we noted that it implies the identities of Quaintance-Gould [3] and Dobinski [3, 5, 6].

2. Boyadzhiev's formula

We know the following property satisfied by the Euler's operator $x \frac{d}{d x}[1-3,6-10]$:

$$
\begin{equation*}
\left(x \frac{d}{d x}\right)^{m} h(x)=\sum_{j=0}^{m} S_{m}^{[j]} x^{j} h^{(j)}(x), \tag{2}
\end{equation*}
$$

then:

$$
\begin{equation*}
Q \stackrel{(2)}{=} \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!}\left(x \frac{d}{d x}\right)^{k} g(x)=\sum_{r=0}^{\infty} \frac{g^{(r)}(0)}{r!} \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!}\left(x \frac{d}{d x}\right)^{k} x^{r} \tag{3}
\end{equation*}
$$

[^0]but from (2):
$$
\left(x \frac{d}{d x}\right)^{k} x^{r}=\sum_{j=0}^{k} S_{k}^{[j]} x^{j} \frac{d^{j} x^{r}}{d x^{j}}=r!\sum_{j=0}^{k} S_{k}^{[j]} \frac{x^{r}}{(r-j)!},
$$
thus (3) implies:
\[

$$
\begin{equation*}
Q=\sum_{r=0}^{\infty} \frac{g^{(r)}(0)}{r!} x^{r} \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} \sum_{j=0}^{k}\binom{r}{j} j!S_{k}^{[j]}=\sum_{r=0}^{\infty} \frac{g^{(r)}(0)}{r!} x^{r} \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} r^{k} \tag{4}
\end{equation*}
$$

\]

where was applied the relation $[3,11]$:

$$
\begin{equation*}
\sum_{j=0}^{k} j!\binom{r}{j} S_{k}^{[j]}=r^{k} \tag{5}
\end{equation*}
$$

The entire function $f(x)$ accepts expansion in Taylor's series, therefore $f(r)=\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} r^{k}$, hence (4) coincides with (1), q.e.d.

If in (1) we employ $g(x)=e^{x}$ and the expression [3]:

$$
\begin{equation*}
S_{k}^{[j]}=\frac{1}{j!} \sum_{r=0}^{j}(-1)^{r}\binom{j}{r}(j-r)^{k}, \tag{6}
\end{equation*}
$$

we obtain the identity of Quaintance-Gould [3]:

$$
\begin{equation*}
\sum_{j=0}^{n} \frac{x^{j}}{j!} \sum_{r=0}^{j}(-1)^{r}\binom{j}{r} f(j-r)=e^{-x} \sum_{k=0}^{\infty} \frac{f(k)}{k!} x^{k}, \quad \forall x, \tag{7}
\end{equation*}
$$

where $f(x)$ is a polynomial of degree n. For the special case $f(x)=x^{n}$ the result (7) gives the Dobinski's formula [3, 5, 6]:

$$
\begin{equation*}
e^{-x} \sum_{k=0}^{\infty} \frac{k^{n}}{k!} x^{k}=\sum_{j=0}^{n} S_{n}^{[j]} x^{j} \tag{8}
\end{equation*}
$$

which for $x=1$ implies the known relation for the Bell numbers [3, 12-14]:

$$
B(n) \equiv \sum_{j=0}^{n} S_{n}^{[j]}=\frac{1}{e} \sum_{k=0}^{\infty} \frac{k^{n}}{k!} .
$$

References

1. K. N. Boyadzhiev, A series transformation formula and related polynomials, Int. J. Maths. \& Math. Sci. 23 (2005) 3849-3866
2. A. Dil, V. Kurt, Polynomials related to harmonic numbers and evaluation of harmonic number series II, Appl. Anal. Discrete Math. 5 (2011) 212-229
3. J. Quaintance, H. W. Gould, Combinatorial identities for Stirling numbers, World Scientific, Singapore (2016)
4. V. Barrera-Figueroa, J. López-Bonilla, R. López-Vázquez, On Stirling numbers of the second kind, Prespacetime Journal 8, No. 5 (2017) 572-574
5. G. Dobinski, Archiv. der Mathematik und Physik 61 (1877) 333-336
6. J. López-Bonilla, J. Yaljá Montiel-Pérez, S. Vidal-Beltrán, On the Melzak and Wilf identities, J. of Middle East and North Africa Sci. 3, No. 11 (2017) 1-3
7. I. J. Schwatt, An introduction to the operators with series, Chelsea, New York (1924)
8. P. M. Knopf, The operator $\left(x \frac{d}{d x}\right)^{n}$ and its application to series, Math. Mag. 76, No. 5 (2003) 364-371
9. J. Stopple, A primer of analytic number theory, Cambridge University Press (2003)
10. T. Arakawa, T. Ibukiyama, M. Kaneko, Bernoulli numbers and zeta functions, Springer, Japan (2014)
11. K. N. Boyadzhiev, Power sum identities with generalized Stirling numbers, The Fibonacci Quart. 4647, No. 4 (2008-2009) 326-330
12. H. W. Gould, T. Glatzer, Catalan and Bell numbers: Research bibliography of two special number sequences (1979), http://www.math.wvu.edu/~gould/
13. M. Z. Spivey, A generalized recurrence for Bell numbers, J. Integer Seq. 11, No. 2 (2008) Art. 08.2.5
14. A. Xu, Extensions of Spivey's Bell number formula, The Electr. J. of Combinatorics 19, No. 2 (2012) 1-8

[^0]: * Correspondence: J. López-Bonilla, ESIME-Zacatenco-IPN, Edif. 5, Col. Lindavista CP 07738, CDMX, México E-mail: jlopezb@ipn.mx

