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Abstract

TGD leads to several proposals for the exact solution of field equations defining space-time surfaces
as preferred extremals of twistor lift of Kéahler action. So called M® — H duality is one of these
approaches. The beauty of M®— H duality is that it could reduce classical TGD to algebraic geometry
and would immediately provide deep insights to cognitive representation identified as sets of rational
points of these surfaces.

In the sequel I shall consider the following topics.

1. T will discuss basic notions of algebraic geometry such as algebraic variety, surface, and curve,
all rational point of variety central for TGD view about cognitive representation, elliptic curves
and surfaces, and rational and potentially rational varieties. Also the notion of Zariski topology
and Kodaira dimension are discussed briefly. I am not a mathematician and what hopefully
saves me from horrible blunders is physical intuition developed during 4 decades of TGD.

2. Tt will be shown how M® — H duality could reduce TGD at fundamental level to octonionic
algebraic geometry. Space-time surfaces in M® would be algebraic surfaces identified as zero
loci for imaginary part IM(P) or real part RE(P) of octonionic polynomial of complexified
octonionic variable o, decomposing as o. = q: +¢2I* and projected to a Minkowskian sub-space
M? of complexified O. Single real valued polynomial of real variable with algebraic coefficients
would determine space-time surface! As proposed already earlier, spacetime surfaces would form
commutative and associative algebra with addition, product and functional composition.

One can interpret the products of polynomials as correlates for free many-particle states with
interactions described by added interaction polynomial, which can vanish at boundaries of CDs
thanks to the vanishing in Minkowski signature of the complexified norm ¢.g: appearing in
RE(P) or IM(P) caused by the quaternionic non-commutativity. This leads to the same picture
as the view about preferred extremals reducing to minimal surfaces near boundaries of CD. Also
zero zero energy ontology (ZEO) could emerge naturally from the failure of number field property
for for quaternions at light-cone boundaries.

The construction and interpretation of the octonionic geometry involves several challenges.

1. The fundamental challenge is to prove that the octonionic polynomials with real coefficients
can give rise to associative (co-associative) surfaces as the zero loci of their real part RE(P)
(imaginary parts IM(P)). RE(P) and IM(P) are defined in quaternionic sense. Contrary to
the first naive working hypothesis, the identification M* C O as as a co-associative region turns
out to be the correct choice making light-cone boundary a counterpart of point-like singularity
essential for the emergence of causal diamonds (CDs).

The hierarchy of notions involved is well-ordering for 1-D structures, commutativity for complex
numbers, and associativity for quaternions. This suggests a generalization of Cauchy-Riemann
conditions for complex analytic functions to quaternions and octonions. Cauchy Riemann
conditions are linear and constant value manifolds are 1-D and thus well-ordered. Quater-
nionic polynomials with real coefficients define maps for which the 2-D spaces corresponding
to vanishing of real/imaginary parts of the polynomial are complex/co-complex or equivalently
commutative/co-commutative. Commutativity is expressed by conditions bilinear in partial
derivatives. Octonionic polynomials with real coefficients define maps for which 4-D surfaces
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for which real/imaginary part are quaternionic/co-quaternionic, or equivalently associative/co-
associative. The conditions are now 3-linear.

In fact, all algebras obtained by Cayley-Dickson construction adding imaginary units to octo-
nionic algebra are power associative so that polynomials with real coefficients define an associa-
tive and commutative algebra. Hence octonion analyticity and M® — H correspondence could
generalize.

2. It turns out that in the generic case associative surfaces are 3-D and are obtained by requiring
that one of the coordinates RE(Y)" or IM(Y)" in the decomposition Y* = RE(Y)" + IM(Y)"I4
of the gradient of RE(P) = Y = 0 with respect to the complex coordinates z¥, k = 1,2, of O
vanishes that is critical as function of quaternionic components z¥ or z§ associated with ¢; and
g2 in the decomposition o = q1 + g214, call this component X;. In the generic case this gives

3-D surface.

In this generic case M® — H duality can map only the 3-surfaces at the boundaries of CD and
light-like partonic orbits to H, and only determines the boundary conditions of the dynamics
in H determined by the twistor lift of Kihler action. M® — H duality would allow to solve the
gauge conditions for SSA (vanishing of infinite number of Noether charges) explicitly.

One can also have criticality. 4-dimensionality can be achieved by posing conditions on the
coefficients of the octonionic polynomial P so that the criticality conditions do not reduce the
dimension: X; would have possibly degenerate zero at space-time variety. This can allow 4-D
associativity with at most 3 critical components X;. Space-time surface would be analogous
to a polynomial with a multiple root. The criticality of X; conforms with the general vision
about quantum criticality of TGD Universe and provides polynomials with universal dynamics
of criticality. A generalization of Thom’s catastrophe theory emerges. Criticality should be
equivalent to the universal dynamics determined by the twistor lift of Kahler action in H in
regions, where K&hler action and volume term decouple and dynamics does not depend on
coupling constants.

One obtains two types of space-time surfaces. Critical and associative (co-associative) surfaces
can be mapped by M® — H duality to preferred critical extremals for the twistor lift of Kihler
action obeying universal dynamics with no dependence on coupling constants and due to the
decoupling of Kahler action and volume term: these represent external particles. M® — H
duality does not apply to non-associative (non-co-associative) space-time surfaces except at 3-D
boundary surfaces. These regions correspond to interaction regions in which Kéhler action and
volume term couple and coupling constants make themselves visible in the dynamics. M® — H
duality determines boundary conditions.

3. This picture generalizes to the level of complex/co-complex surfaces assigned with fermionic
dynamics. Why in some cases 1-D light-like curves at partonic orbits seem to be enough to
represent fermions? Why fermionic strings serve as correlates of entanglement for bound states?
What selects string world sheets and partonic 2-surfaces from the slicing of space-time surfaces?

I have proposed commutativity or co-commutatitivity of string worlds sheets/partonic 2-surfaces

in quaternionic sense as number theoretic explanation (tangent space as a sub-space of quater-
nionic space is commutative/co-commutative at each point). Why not all string world sheets/partonic
2-surfaces in the slicing are not commutative/co-commutative? The answer to these questions

is criticality again: in the generic case commutative varieties are 1-D curves. In critical case one

has 2-D string worlds sheets and partonic 2-surfaces.

1 Introduction

There are good reasons to hope that TGD is integrable theory in some sense. Classical physics is an exact
part of quantum physics in TGD and during years I have ended up with several proposals for the general
solution of classical field equations (classical TGD is an exact part of quantum TGD).
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1.1 Various approaches to classical TGD
1.1.1 World of classical worlds
The first approach is based on the geometry of the ”world of classical worlds” (WCW) [14] [12] 23].

1. The study of classical field equations led rather early to the realization that preferred extremals
of twistor lift of Kéhler action with Minkowskian signature of induced metric define a slicing of
space-time surfaces defined by 2-D string world sheets and partonic two-surfaces locally orthogonal
to them. The interpretation is in terms of position dependent light-like momentum vector and
polarization vector defining the local decompositions M?(z) x E?(x) of tangent space integrating
to a foliation by partonic 2-surfaces and string world sheets. I christened this structure Hamilton-
Jacobi structure. Its Euclidian counterpart is complex structure in Euclidian regions of space-time

surface.

2. The formulation of quantum TGD in terms of spinor fields in WCW [21] leads to the conclusion
that WCW must have Kéhler geometry [14][12] and has it only if it has maximal group of isometries
identified as symplectic transformations of §M{ x CP,, where §M{ denotes light cone boundary
two which upper/lower boundary of causal diamond (CD) belongs. Symplectic Lie algebra extends

naturally to supersymplectic algebra (SSA).

Space-time surfaces would be preferred extremals of twistor lift of Kéhler action [29] and the condi-
tions realizing strong form of holography (SH) would state that sub-algebra of SSA isomorphic with
it and its commutator with SSA give rise to vanishing Noether charges and these charges annihilate

physical states or create zero norm states from them.

1.1.2 Twistor lift of TGD

Second approach to preferred extremals is based on TGD version [20, 28|, 27, 29] of twistor Grassmann

approach [, 10} ©].

1. The twistor lift of TGD leads to a proposal that space-time surfaces can be represented as sections
in their 6-D twistor spaces identified as twistor bundles in the product T(H) = T(M*) x T(CP,)
of 6-D twistor spaces of M* and CP,. Twistor structure would be induced from T'(H). Kéhler
action can be lifted to the level of twistor spaces only for M* x C P, since only for these spaces
twistor space allows Kéhler structure [2]. Twistors were originally introduced by Penrose with the
motivation that one could apply algebraic geometry in Minkowskian signature. The bundle property
is extremely powerful and should be consistent with the algebraic geometrization at the level of M$.

The challenge is to formulate the twistor lift at the level of M3.

2. The twistor lift of Kahler action contains also volume term. Field equations have two kinds of solu-
tions. For the solutions of first kind the dynamics of volume term and Kéction are coupled and the
interpretation is in terms of interaction regions. Solutions of second kind are minimal surfaces and
extremals of both Kéahler action and volume term, whose dynamics decouple completely and all cou-
pling constants disappear from the dynamics. These extremals are natural candidates for external
particles. For these solutions at least the field equations reduce to the existence of Hamilton-Jacobi
structure. The completely universal dynamics of these regions suggests interpretation in terms of
maximal quantum criticality characterized by the extension of the usual conformal invariance to its

quaternionic analog.

3. A connection with zero energy ontology (ZEQO) emerges. Causal diamond (CD, intersection of future
and past directed light-cones of M* with points replaced by C'P,) would naturally determine the
interaction region to which external particles enter through its 2 future and past boundaries. But

where does ZEO emerge?
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1.1.3 M?® — H duality

The third approach is based on number theoretic vision [18, 19, 17, [24].

1.

1.2

M8 — H duality [19, 24, 25] means that one can see space-times as 4-surfaces in either M® or
H = M* x CP,. One could speak "number theoretical compactification” having however nothing
to do with stringy version of compactification, which is dynamical. M® — H duality suggests that
space-time surfaces in H = M* x CP, are images of space-time surfaces in M® or actually of M8
projections of complexified space-time surfaces in M¢ identified as space of complexified octonions.
These space-time surfaces could contain the integrated distributions of string world sheets and
partonic 2-surfaces mentioned in the previous item. Space-time surfaces must have associative
tangent or normal space for M® — H correspondence to exist.

. The fascinating possibility mentioned already earlier is that these surfaces could correspond to zero

loci for real or imaginary parts of real analytic octonionic polynomials P(o) = RE(P)+IM(P)ly, I4
an octonionic imaginary unit orthogonal to quaternionic ones. The condition IM(P) =0 (RE(P) =
0) would give associative (co-associative) space-time surface. In the simplest case these functions
would be polynomials so that one would have algebraic geometry for algebraically 4-D complex
surfaces in 8-D complex space.

Remark: The naive guess that space-time surfaces reduces to quaternionic curves in quater-
nionic plane fails due to the non-commutativity of quaternions meaning that one has P(o) =
P(q17qQaqlqu) rather than P(O) = P(qlaQQ)'

One could also consider the possibility that the tangent spaces of space-time surfaces in H are
associative or co-associative [24]. This is not necessary although it seems that this might be the
case for the known extremals. If this holds true, one can construct further preferred extremals by
functional composition by generalization of M® — H correspondence to H — H correspondence.

I have considered also the possibility of quaternion analyticity in the sense of generalization of
Cauchy-Riemann equations, which tell that left- or right quaternionic differentiation makes sense
[34]. Tt however seems that this approach is not promising. The conditions are quite too restrictive
and bring nothing essentially new. Octonion/quaternion analyticity in the above mentioned sense
does not require the analogs of Cauchy-Riemann conditions.

Could one identify space-time surfaces as zero loci for octonionic poly-
nomials with real coefficients?

The identification of space-time surfaces as zero loci of real or imaginary part of octonionic polynomial
has several extremely nice features.

1.

Octonionic polynomial is an algebraic continuation of a real valued polynomial on real line so
that the situation is effectively 1-dimensional! Once the degree of polynomial is known, the value
of polynomial at finite number of points are needed to determine it and cognitive representation
could give this information! This would strengthen the view strong form of holography (SH) - this
conforms with the fact that states in conformal field theory are determined by 1-D data.

. One can add, sum, multiply, and functionally compose these polynomials provided they correspond

to the same quaternionic moduli labelled by C'P, points and share same time-line containing the
origin of quaternionic and octonionic coordinates and real octonions (or actually their complexifica-
tion by commuting imaginary unit). Classical space-time surfaces - classical worlds - would form an
associative and commutative algebra. This algebra induces an analog of group algebra since these
operations can be lifted to the level of functions defined in this algebra. These functions form a
basic building brick of WCW spinor fields defining quantum states.

ISSN: 2153-8301 Prespacetime Journal www.prespacetime.com

Published by QuantumDream, Inc.



Prespacetime Journal | August 2017 | Volume 8 | Issue 8 | pp. 900-937 904
Pitkdnen, M., Does M® — H Duality Reduce Classical TGD to Octonionic Algebraic Geometry? (Part I)

3. One can interpret the products of polynomials as correlates for free many-particle states with
interactions described by added interaction polynomial, which can vanish at boundaries of CDs.
This leads to the same picture as the view about preferred extremals reducing to minimal surfaces
near boundaries of CD [32]. Also zero zero energy ontology (ZEO) could be forced by the failure of
number field property for quaternions at light-cone boundaries. It indeed turns out that light-cone
boundary emerges quite generally as singular zero locus of polynomials P(o) containing no linear
part: this is essentially due to the non-commutativity of the octonionic units. Also the emergence
of CDs can be understood. At this surface the region with RE(P) = 0 can transform to IM(P) =0
region. In Euclidian signature this singularity corresponds to single point. A natural conjecture
is that also the light-like orbits of partonic 2-surfaces correspond to this kind of singularities for
non-trivial Hamilton-Jacobi structures.

4. The reduction to algebraic geometry would mean enormous boost to the vision about cognition
with cognitive representations identified as generalized rational points common to reals rationals
and various p-adic number fields defining the adele for given extension of rationals. Hamilton-Jacobi
structure would result automatically from the decomposition of quaternions to real and imaginary
parts which would be now complex numbers.

5. Also a connection with infinite primes is suggestive [I9]. The light-like partonic orbits, partonic
2-surfaces at their ends, and points at the corners of string world sheets might be interpreted in
terms of singularities of varying rank and the analog of catastrophe theory emerges.

1.3 Topics to be discussed
1.3.1 Key notions and ideas of algebraic geometry

Before going of octonionic algebraic geometry, I will discuss basic notions of algebraic geometry such as
algebraic variety (see http://tinyurl.com/hl6sjmz), - surface (see http://tinyurl.com/y8d5wsmj),
and - curve (see http://tinyurl.com/nt6tkey), rational point of variety central for TGD view about
cognitive representation, elliptic curves (see http://tinyurl.com/lovksny) and - surfaces (see http:
//tinyurl.com/yc33a6dg), and rational points (see http://tinyurl.com/ybbnnysu) and potentially
rational varieties (see http://tinyurl.com/yablk4xt|). Also the notion of Zariski topology (see http:
//tinyurl.com/h5pv4vk) and Kodaira dimension (see http://tinyurl.com/yadoj2ut|) are discussed
briefly. I am not a mathematician. What hopefully saves me from horrible blunders is physical intuition
developed during 4 decades of TGD.

1.3.2 M3 — H duality

M8 — H duality [25] 19} 24] would reduce classical TGD to the algebraic geometry and would immediately
provide deep insights to cognitive representation identified as sets of rational points of these surfaces.
Space-time surfaces in M® would be algebraic varieties identified as zero loci for imaginary part IM (P)
or real part RE(P) of octonionic polynomial of complexified octonionic variable o decomposing as o =
ql + ¢2I, and projected to a Minkowskian sub-space M® of o. Single real valued polynomial of real
variable with algebraic coefficients would determine space-time surface! As proposed already earlier,
spacetime surfaces would form commutative and associative algebra with addition, product and functional
composition.

The basic problem is to understand the map mediating M® — H duality mapping the point (m,e)
of M® = M§ x E* to a point (m,s) of M} x CP,, where M{ point is obtained as a projection to
a suitably chosen M{J C M?® and CP, point parameterizes the tangent space as quaternionic sub-space
containing preferred Mg (z) C M*(x). This map involves slightly non-local information and could allow to
understand why the preferred extremals at the level of H are determined by partial differential equations
rather than algebraic equations. Also the generalization to the level of twistor lift is briefly touched.
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1.3.3 Challenges of the octonionic algebraic geometry

The construction and interpretation of the octonionic geometry involves several challenges.

1. The fundamental challenge is to prove that the octonionic polynomials with real coefficients deter-
mine associative/quaternionic surfaces as the zero loci of their imaginary/real parts in quaternionic
sense. Here the intuition comes from the idea that the octonionic polynomials map from octonionic
space O to second octonionic space W. Real and imaginary parts in W are quaternionic/co-
quaternionic. These planes correspond to surfaces in O defined by the vanishing of real/imagninary
parts, and the natural guess is that they are quaternionic/co-quaternionic, that is associative/co-
associative.

This suggests a generalization of Cauchy-Riemann conditions for complex analytic functions to
quaternions and octonions. Cauchy Riemann conditions are linear. Quaternionic polynomials with
real coefficients define maps for which the 2-D spaces corresponding to vanishing of real/imaginary
parts of the polynomial are complex/co-complex or equivalently commutative/co-commutative.
Commutativity is expressed by conditions bilinear in partial derivatives. Octonionic polynomi-
als with real coefficients define maps for which 4-D surfaces for which real/imaginary part are
quaternionic/co-quaternionic, or equivalently associative/co-associative. The conditions are now
3-linear.

In fact, all algebras obtained by Cayley-Dickson construction (see http://tinyurl.com/ybuyla2k)
by adding imaginary unit repeatedly to octonionic algebra are power associative so that polynomials
with real coefficients define an associative and commutative algebra. Hence octonion analyticity and
a M® — H correspondence could generalize (maybe even TGD!).

2. It turns out that in the generic case associative surfaces are 3-D and are obtained by requiring that
one of the coordinates RE(Y)? or IM(Y)? in the decomposition Y¢ = RE(Y)* + IM(Y)"I4 of the
gradient of RE(P) = Y = 0 with respect to the complex coordinates z¥, k = 1,2, of O vanishes
that is critical as function of quaternionic components z¥ or z§ associated with ¢; and ¢ in the

decomposition 0 = ¢q1 + g214, call this component X;. In the generic case this gives 3-D surface.

In this generic case M® — H duality can map only the 3-surfaces at the boundaries of CD and
light-like partonic orbits to H, and only determines the boundary conditions of the dynamics in H
determined by the twistor lift of Kéhler action. M® — H duality would allow to solve the gauge
conditions for SSA (vanishing of infinite number of Noether charges) explicitly.

One can also have criticality. 4-dimensionality can be achieved by posing conditions on the coeffi-
cients of the octonionic polynomial P so that the criticality conditions do not reduce the dimension:
X; would have possibly degenerate zero at space-time variety. This can allow 4-D associativity with
at most 3 critical components X;. Space-time surface would be analogous to a polynomial with a
multiple root. The criticality of X; conforms with the general vision about quantum criticality of
TGD Universe and provides polynomials with universal dynamics of criticality. A generalization of
Thom’s catastrophe theory [I] emerges. Criticality should be equivalent to the universal dynamics
determined by the twistor lift of Kahler action in H in regions, where Kéhler action and volume
term decouple and dynamics does not depend on coupling constants.

One obtains two types of space-time surfaces. Critical and associative (co-associative) surfaces can
be mapped by M® — H duality to preferred critical extremals for the twistor lift of Kahler action
obeying universal dynamics with no dependence on coupling constants and due to the decoupling
of Kéhler action and volume term: these represent external particles. M® — H duality does not
apply to non-associative (non-co-associative) space-time surfaces except at 3-D boundary surfaces.
These regions correspond to interaction regions in which Kahler action and volume term couple and
coupling constants make themselves visible in the dynamics. M® — H duality determines boundary
conditions.
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3. This picture generalizes also to the level of complex/co-complex surfaces associated with fermionic
dynamics. Why in some cases 1-D light-like curves at partonic orbits seem to be enough to repre-
sent fermions? Why fermionic strings serve as correlates of entanglement for bound states? What
selects string world sheets and partonic 2-surfaces from the slicing of space-time surfaces? I have
proposed commutativity or co-commutatitivity of string worlds sheets/partonic 2-surfaces in quater-
nionic sense as number theoretic explanation (tangent space as a sub-space of quaternionic space is
commutative/co-commutative at each point). Why not all string world sheets/partonic 2-surfaces
in the slicing are not commutative/co-commutative? The answer to these questions is criticality
again: in the generic case commutative varieties are 1-D curves. In critical case one has 2-D string
worlds sheets and partonic 2-surfaces.

The easiest manner to kill the idea of M® — H duality in the proposed form is to prove that the zero
loci for imaginary /real parts of octonionic polynomials with real coefficients cannot be associative/co-
associative. This would force to assume it holds true at the 3-D sub-varieties of 4-varieties: this option
would be the minimal one. I hope that some professional mathematician would bother to check this.

In the sequel I will use some shorthand notations for key principles and key notions. Quantum Field
Theory (QFT); Relativity Principle (RP); Equivalence Principle (EP); General Coordinate Invariance
(GCT); Strong Form of GCI (SGCI); Quantum Criticality (QC); Strong Form of Holography (SH); World
of Classical Worlds (WCW); Preferred Extremal (PE); Zero Energy Ontology (ZEO); Causal Diamond
(CD); Number Theoretical Universality (NTU) are the most often occurring acronyms.

2 Some basic notions, ideas, results, and conjectures of algebraic
geometry

In this section I will summarize very briefly the basic notions of algebraic geometry needed in the sequel.

2.1 Algebraic varieties, curves and surfaces

The basic notion of algebraic geometry is algebraic variety.

1. One considers affine space A™ with n coordinates z', ..., 2™ having values in a number field K usually
assumed to be algebraically closed (note that affine space has no preferred origin like linear space).
Algebraic variety is defined as a solution of one or more algebraic equations stating the vanishing
of polynomials of n variables: Pi(z!,...,2") =0,i=1,...,r <n. One can restrict the coefficients of
polynomials to p-adic number field or or its extension to an extension of rationals. One talks about
polynomials on k& C K.

2. The basic condition is that the variety is not a union of disjoint varieties. This for instance happens,
when the polynomial P(z!,..,2") defining co-dimension 1 manifold is product of polynomials P =
[L,. P-. Algebraic variety need not be a manifold meaning that it can have singular points. For
instance, for co-dimension 1 variety the Jacobian matrix 9P/dx" of the polynomial can vanish at
singularity.

3. One can define projective varieties (see http://tinyurl.com/ybsqvy3r)) in projective space P™
having coordinatization in terms of n + 1 homogenous coordinates (z!,...,2""!) in K with points
differing by an overall scaling identified. Projective variety is defined as zero locus of homogenous
polynomials of n 4+ 1 coordinates so that solutions remain solutions under the overall scaling of all
coordinates. By identifying the points related by scaling one obtains a surface in P". Grassmannian
of linear space V™ (not affine space!) is a projective spaces defined as space of k-planes of V™. These
spaces are encountered in twistor Grassmannian approach to scattering amplitudes.
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For polynomials of single variable one obtains just the roots of P,(z) = 0 in an algebraic exten-
sion assignable to the polynomial. For several variables one can in principle proceed step by step by
solving variable 2! as algebraic function of others from Pj(x!,...,2") = 0 , proceed to solve z? from
Py(xt(2?,...),2%,...) = 0 as as algebraic function of the remaining variables, and so one. The algebraic
functions involved get increasingly complex but in some exceptional situations the solution has parametric
representation in terms of rational rather than algebraic functions of parameters t*. For co-dimension
d. > 1 case the intersection of surfaces P* = 0 need not be complete and the tangent spaces of the
hyper-surfaces P! = 0 need not intersect transversally in the generic case. Therefore d. > 1 case is not
gained so much attention as d. = 1 case.

A more advanced treatment relies on ring theory by assigning to polynomials a ring as the ring of
polynomials in the space involved divided by the ring of polynomials vanishing at zero loci of polynomials
Pt

1. The notion of ideal is central and determined as a subring invariant under the multiplication by
elements of ring. Prime ideal generalizes the notion of prime and one can say that the notion of
integer generalizes to that of ideal. One can also define the notion of fractional ideal.

2. Zariski topology (see http://tinyurl.com/h5pv4vk) replacing the topology based on real norm is
second highly advanced notion. The closed sets in this topology are algebraic varieties of various
dimensions. Since the complement of any algebraic variety is open set this topology and open also
in the ordinary real topology, this topology is considerable rougher than the ordinary than the
ordinary topology.

Some remarks from the point of view of TGD are in order.

1. In the scenario inspired by M® — H duality one has co-dimension 4 surfaces in 8-D complex space.
Octonionicity of polynomials however implies huge symmetries since the polynomial is determined
by single real polynomial of real variable, whose values at finite number of points determined the
polynomial.

2. In TGD the extension of rationals can be assumed to contain also powers for some root of e since
in p-adic context this gives rise to a finite-dimensional extensions due to the fact that e? is ordinary
p-adic number. Also a restriction to a finite field are possible and restriction of rational coefficients
to their modulo p counterparts reduces the polynomial to polynomial in finite field. This reduction
is used as a technical tool. In the case of Diophantine equations (see http://tinyurl.com/nt6tkey
and http://tinyurl.com/y8hmdzce) the coefficients are restricted to be integers.

3. In adelic TGD [31] [36] the number fields involved are reals and extensions of p-adic numbers.
The coefficient field for the coefficients of polynomials would be naturally extension of rationals or
extension of p-adics induced by it. The coefficients of polynomials serve as coordinates of adelic
WCW. p-Adic numbers are not algebraically closed and one must assume an extension of p-adic
numbers from that for the coefficients one to allow maximal number of roots.

This suggests an evolutionary process [38] extending the number field for the coefficients of polyno-
mials. Arbitrary root of polynomial for given extension can be realized only if the original extension
is extended further. But this allows polynomial coefficients in this new extension: WCW is now
larger. Now one has however roots in even larger extension so that the unavoidable outcome is
number theoretic evolution as increase of complexity.

4. What is so remarkable is that octonionic polynomials with rational coefficients could be determined
by their values at finite set of points for a polynomial of real argument once the order of polynomial
is fixed. Real coordinate corresponds to preferred time axis naturally. A cognitive representation
consisting of finite number of rational points could fix the entire space-time surface! This would
extend ordinary holography to its discrete variant!

ISSN: 2153-8301 Prespacetime Journal www.prespacetime.com
Published by QuantumDream, Inc.


http://tinyurl.com/h5pv4vk
http://tinyurl.com/nt6tkey
http://tinyurl.com/y8hm4zce

Prespacetime Journal | August 2017 | Volume 8 | Issue 8 | pp. 900-937 908
Pitkdnen, M., Does M® — H Duality Reduce Classical TGD to Octonionic Algebraic Geometry? (Part I)

5. Algebraic variety is rather simple object as compared to the solutions of partial differential equations
encountered in physics - say those for minimal surfaces. Now one must fix boundary values or initial
values at n — 1-dimensional surface to fix the solution. For integrable theories the situation can
change. In TGD SH suggests that the classical solutions are determined by data at 2-surfaces,
which together with conformal invariance could reduce the data to one-dimensional data specified
by a polynomial. M8 — H correspondence allows to consider this option seriously.

6. M® — H duality suggests that space-time surfaces are co-dimension d. = 4 algebraic curves in M.
Could space-time surfaces define closed sets for the analog of Zariski topology? Could string world
sheets and partonic 2-surfaces do the same inside space-time surfaces? An interesting question is
whether this generalizes also to the level of imbedding space H and could perhaps define a topology
rougher than real topology in better accord with the notion of finite measurement resolution.

2.2 About algebraic curves and surfaces

The realization M® — H correspondence to be considered allows to understand space-time surfaces as 4-D
complex algebraic surfaces X2 in the space o of complexified octonions projected to real sub-space of O°
with Minkowskian signature. Due to the non-commutativity of quaternions, the reduction of space-time
surfaces to curves in quaternionic plane is not possible. Despite this it is instructive to start from the
algebraic geometry of curves and surfaces.

2.2.1 Degree and genus of the algebraic curve

Algebraic curve is defined as zero locus of a polynomial P(x!,x2,...,2™) with 2™ in some - preferably

algebraically closed - number field K and coefficients in some number field ¥ C K. In adelic physics K
corresponds to real or complex numbers and k to the extension of rationals defining adeles. In p-adic
sectors k corresponds to tje extension of p-adic numbers induced by k. In general roots belong to an
extension of k.

Degree, genus, and Euler characteristic are the basic characterizers of algebraic curve.

1. The degree d of algebraic curve corresponds to the highest power for the variables appearing in the
polynomial. One can also define multi-degree in an obvious manner. A useful geometric interpre-
tation for the degree is that line intersects curve (also complex) of degree d in at most d points as
is clear from the fact that the equation of curve reduces the equation for curve to an equation for
the roots of d:th order polynomial of single variable.

2. Also the genus g of the curve (see http://tinyurl.com/ybm3wfue) is important characteristic.
One can distinguish between topological genus, geometric genus and arithmetic genus. For curves
these notions are equivalent. The connection between genus and degree d of non-singular algebraic
curve is very useful:

Spherical topology for complex curves corresponds to n =1 and n = 2.

A more general formula reads as:

(d-1)(d-2) n,

= TR Y s 2.2
g 5 +5 (2.2)

Here ny is the number of holes of the curve behaving like holes and increasing the genus.
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3. Euler characteristic (for Euler characteristic see http://tinyurl.com/pp52zd4) is a homological
invariant making sense in arbitrary dimension and also for manifolds. Homological definition based
on simplicial homology relies on counting of simplexes of various dimension. The definition in terms
of dimensions of homology groups H, is given by

X = bo — b1 + b2 + (*l)nbn y (23)

where by, is the dimension of k:th homology group (see http://tinyurl.com/j480jys).

The following gives the engineering rules for obtaining Euler characteristic of the surface obtained
from simpler building blocks. Note that algebraic variety property is not essential here.

1. Euler characteristic is homotopy invariant so that it does not change one adds homologically trivial
space such as E™ as a Cartesian factor.

2. x is additive under disjoint union. Inclusion-exclusion principle states that if M and N intersect,
one has x(M UN) = x(M) + x(N) — x(M N N).

3. Euler characteristic for the connected sum A#B of n-dimensional manifolds obtained by drilling
balls B™ from summands, giving opposite orientation to the boundaries of the hole, and connecting
with cylinder D x S"~! is given by x(A) + x(B) — x(S"~!). One has x(S5?) = 2 and x(D?) = 1.

4. The Euler characteristic for product M x N is x(M) x x(N).

5. The Euler characteristic for N-fold covering space M,, is N x x(M) with a correction term coming
from the singularities of the covering (ramified covering space).

6. For a fibration M — B with fiber S, which differs from fiber bundle in that the fibers are only
homeomorphic, one has x(M) = x(B) x x(5).

Euler characteristic and the genus of 2-surface (or complex) curve are related by the equation

x = 2(1-g) . (2.4)
having values 2,0, -2, ..... If the 2-surface has ng holes (punctures), one has
X = 2(1 - g) —MNs . (25>

Punctures must be distinguished from singularities at which some sheets of covering meet at single point.
A formal generalization of the definition of genus for varieties in terms of Euler characteristic makes
sense.

g = —=+1—-—=. (2.6)

Disk has genus 1/2 and drilling of n holes increases genus by n/2. Pair of holes gives same contribution
to ¢ and the cylinder connecting the holes. Note that for complex curves the definition of puncture is
obvious. For real curves the puncture would mean missing point of the curve.

The latter definitions of genus can be identified in terms of Euler characteristic also for higher-
dimensional varieties. For curves these notions are equivalent if there are no singularities. For algebraic
curves g is same for the real and complex variants of the curve in RP; and CP; respectively.
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2.2.2 Elliptic curves and elliptic surfaces

Elliptic curves (see http://tinyurl.com/lovksny) are cubic curves with no singularities (cusps or self-
intersections) having representation of form y? — 2% — ax — b = 0. These singularities can occur only at
special values of parameters ((a¢ = 0,b = 0). Since the degree equals to d = 3, elliptic curve has genus
g=1.

Elliptic curves allow a group of Abelian symmetries generated by a finite number of generators. The
emergence of abelian group structure can be intuitively understood as follows.

1. Given line intersects the curve of degree 3 in at most 3 points. Let P and @ be two of these points.
Then there can be also a third intersection point R and by the Z2? symmetry changing the sign of
y also the reflection of R - identify it as —R - belongs to the curve. Define the sum of P + @ to be
—-R.

The actual proof is slightly more complicated since the number of intersection points for the line
with curve can be also 2 or 1. By writing explicit expressions for the coordinates xr and yg, one
can also find that they are indeed rational if the points P and @) are rational. If the elliptic curve
as single rational point it has infinite number of them.

2. The generators with finite order give rise to torsion. The rank of generators of infinite order is
called rank and conjectured to be arbitrarily large (see http://tinyurl.com/lovksny) . Therefore
elliptic curve is an Abelian group and one talks about Abelian variety. If elliptic curve contains a
rational point it contains entire lattice of rational points obtained as shifts of this point.

Remark: Complex elliptic curves are 2-surfaces in complex projective plane C'P; and therefore highly
interesting from TGD point of view. g = 1 partonic 2-surfaces would in TGD framework correspond
to second generation fermions [I1]. Abelian varieties define a generalization of elliptic curves to higher
dimensions and simplest space-time surfaces allowing also large cognitive representations could correspond
to such.

Elliptic surfaces (see http://tinyurl.com/yc33a6dg) are fibrations with an algebraic curve as base
space and elliptic curve as fiber (fibration is more general notion than fiber space since the fibers are only
homeomorphic). The singular fibers failing to be elliptic curves have been classified by Kodaira.

2.3 The notion of rational point and its generalization

The notion of algebraic integer (see http://tinyurl.com/y8z389a7) makes sense for any number field
as a root of a monic polynomial (polynomial with integer coefficients with coefficient of highest power
equal to unity). The field of fractions for given number field consists of ratios of algebraic integers. The
same is true for the notion of prime. The more precise definition forces to replace integers and primes
with ideals.

Rational varieties are expressible as maps defined by rational functions with rational coefficients in
some extension of ) and contain infinite number of rational points. If the variety is not rational, one can
ask whether it could allow a dense set of rational points with rational number replaced with the ratio
of algebraic integers for some extension of (). This leads to the idea of potentially rational point, and
one can classify algebraic varieties according to whether they are potentially rational or not. The variety
is potentially rational if it allows a parameteric representation using rational functions. Otherwise the
parametric representation involves algebraic functions such as roots of rational functions.

The interpretation in terms of cognition would be that large enough extension makes the situation
”cognitively easy” since cognitive representations involving fermions at the rational points and defining
discretizations of the algebraic variety could be arbitrary large. The simpler the surface is cognitively,
the large the number of rational points or potentially rational points is.

Complexity of algebraic varieties is measured by Kodaira dimension dy (see http://tinyurl.com/
yadoj2ut). The spectrum for this dimension varies in the range (—00,0, 1,2, ...d), where d is the algebraic
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dimension of the variety. Maximal value equals to the ordinary topological dimension d and corresponds
to maximal complexity: in this case the set of rational points is finite. Minimal Kodaira dimension is
dx = —oo: in this case the set of rational points is infinite. Rational surfaces are maximally simple and
this corresponds to the existence of parametric representations using only rational functions.

2.3.1 Rational points for algebraic curves

The sets of rational points for algebraic curves are well understood. Mordelli conjecture proved by
Falting as a theorem (see http://tinyurl.com/y90q37ce|) states that a curve over () with genus g =
(d—1)(d—2)/2 > 1 (degree d > 3) has only finitely many rational points.

1. Sphere CP; in C'P; has rational points as a dense set. Quite generally rational surfaces, which by
definition allow parametric representation using polynomials with rational coefficients (encountered
in context of Du Val singularities characterized by the extended Dynkin diagrams for finite subgroups
of SU(2)) allow dense set of rational points [3] [5]).

g = 0 does not yet guarantee that there is dense set of rational points. It is possible to have complex
conics (quadratic surface) in C'Py with no rational points. Note however that this depends on the
choice of the coordinates: if origin belongs to the surface, there is at least one rational point

2. Elliptic curve y? — 23 — ax — b in CP» (see http://tinyurl.com/lovksny) has genus ¢ = 1 and
has a union of lattices of rational points and of finite cyclic groups of them since it has origin as a
rational point. This lattice of points are generated by translations. Note that elliptic curve has no
singularities that is self intersections or cusps (for a = 0,b = 0 origin is a singularity).

g = 1 does not guarantee that there is infinite number of rational points. Fermat’s last theorem
and CP, as example. 2 +y? = 2¢ is projectively invariant statement and therefore defines a curve
with genus g = (d — 1)(d — 2)/2 in CP, (one has g = 0,0,2,3,6,10,...). For d > 2, in particular
d = 3, there are no rational points.

3. g > 2 curves do not allow a dense set of rational points nor even potentially cense set of rational
points.

Remark: In TGD framework algebraic varieties could be zero loci of octonionic polynomials and have
algebraic dimension 4 so that the classification for algebraic curves does not help. Octonion analyticity
must bring in symmetries which simplify the situation.

2.3.2 Enriques-Kodaira classification

The tables of (see http://tinyurl.com/ydelrdnp) give an overall view about the Enriques-Kodaira
classification of algebraic curves, surfaces, and varieties in terms of Kodaira dimension (see http://
tinyurl.com/yadoj2ut).

1. For instance, general curves (g > 2) have dix = 1, elliptic curves (g = 1) have dx = 0 and projective
line (¢ = 0) has dg = —oco. CP; C CP, is a rational curve so that rational points are dense. Elliptic
curves allow infinite number or rational points forming an Abelian group if they containing single
rational point and are therefore cognitively easy.

2. Algebraic varieties (with real dimension dg = 4 in complex case) with dx = 2 are surfaces of general
type, elliptic surfaces (see http://tinyurl.com/yc33a6dg) have dx = 1, surfaces with attribute
abelian, hyper-elliptic, K3, and Enriques, have dg = 0.

Remark: All real 2-surfaces are hyper-elliptic for ¢ < 2, in other words allow Z5 as global conformal
symmetry. Genus-generation correspondence [II] for fermions allows to assign to the 3 lowest
generations of fermions hyper-elliptic partonic 2-surfaces with genus ¢ = 0,1,2. These surfaces
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would have di = 0 and be rather simple as real surfaces in Kodaira classification. Could one regard
them as M* projection of complex hyper-elliptic surfaces of real dimension dg = 4? dg = —o0
holds true for rational surfaces and ruled surfaces, which allow straight line through any point are
maximally simple. In complex case the line would be C'P;.

3. The Wikipedia article gives also a table about the classification of algebraic 3-folds. Real algebraic
3-surfaces might well occur in TGD framework. The twistor space for space-time surface might
allow realization as complex 3-fold and since it has S? has fiber, it would naturally correspond to an
uni-ruled surface with dx = —oo. The table shows that one can build higher dimensional algebraic
varieties with dxg < d from lower-dimensional ones as fiber-space like structures, which based or
fiber having dx < d. 3-D Abelian varieties and Calabi-Yau 3-folds are complex manifolds with
dg = 0, which cannot be engineered in this manner.

4. Space-time surfaces would be surfaces of algebraic dimension 4. Wikipedia tables do not give direct
information about this case but one can make guesses on basis of the three tables. Octonionic
polynomials are analytic continuations of real polynomials of real variable, which must mean a huge
simplification, which also favor cognitive representability. The best that one might have infinite
sets of rational points. The examples about extremals of Kahler action does not however favor this
wish.

Bombieri-Lang conjecture (see http://tinyurl.com/y887yn5b) states that, for any variety X of
general type over a number field k, the set of k-rational points of X fails to be Zariski dense (see http:
//tinyurl.com/jm9fh74) in X. This means that , the k-rational points are contained in a finite union
of lower-dimensional sub-varieties of X. In dimension 1, this is exactly Faltings theorem, since a curve is
of general type if and only if it has g > 2. The conjecture of Vojta (see http://tinyurl.com/y9sttuud)
states that varieties of general type cannot be potentially dense. As will be found, these conjectures might
be highly relevant for TGD.

3 Does M?® — H duality allow to use the machinery of algebraic
geometry?

The machinery of algebraic geometry is extremely powerful. In particular, the number theoretical uni-
versality of algebraic geometry implies that same equations make sense for all number fields: this is just
what adelic physics [31] [36] demands. Therefore it would be extremely nice if one could somehow use
this machinery also in TGD framework as it is used in string models. How this could be achieved? There
are several guide lines.

1. Twistor lift of TGD [20] 28, 27, [29] is now a rather well-established idea although a lot of work
remains to be done with the details. Twistors were originally introduced in order to be able to use
this machinery and involves complexification of Minkowski space M* to M2 as an auxiliary tool.
Complexification in sufficiently general sense seems to be a necessary auxiliary tool but it cannot
be a trick (like Wick rotation) but something fundamental and here complexification at the level
of M8 is suggestive. In the sequel I will used M* for M* and M® for M? unless it is necessary to
emphasize that M2 is in question. The essential point is that the Euclidian metric is complexified
and it reduces to a real metric in various sub-spaces defining besides Euclidian space also Minkowski
spaces with varying signature when the complex coordinates are real or imaginary.

2. If M® — H duality holds true, one can solve field equations in M® = M* x E® by assuming that
either the tangent space or normal space of the space-time surface X* is associative (quaternionic)
at each point and contains preferred M? in its tangent space. M? could depend on x but M?(x):s
should integrate to a 2-surface. This allows to map space-time surface M8 to a surface in M* x C P,
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since tangent spaces are parameterized by points of C'P, and CP; takes the role of moduli space.
The image of tangent space as point of C'P» is same irrespective of whether one has quaternions or
complexified quaternions (H.).

It came a surprise that associativity/co-associativity is possible only if the space-time surface is crit-
ical in the sense that some gradients of 8 complex components of the octonionic polynomial P vanish
without posing them as additional conditions reducing thus the dimension of the space-time surface.
This occurs when the coefficients of P satisfy additional conditions. One obtains associative/co-
associative space-time regions and regions without either property and they correspond nicely to
two solution types for the twistor lift of K&hler action.

3. Contrary to the original expectations, M* C M$ must be identified as co-associative (co-quaternionic)
subspace so that E* is the associative/quaternionic sub-space. This allows to have light-cone bound-
ary as the counterpart of point-like singularity in ordinary algebraic geometry and also allows to
understand the emergence of CDs and ZEO.

Remark: A useful convention to be used in the sequel. RE(o) and IM (o) denote the real and
imaginary parts of the octionion in the decomposition o = RE(o) + IM(0)I4 and Re(o) and Im(o) its
real number valued and purely imaginary parts in the usual decomposition.

The problems related to the signature of M* have been a longstanding head-ache of M?® duality.

1. The intuitive vision has been that the problems can be solved by replacing M?® with its complexifi-
cation M? identifiable as complexified octonions o. This requires introduction of imaginary unit i
commuting with the octonionic units E* <+ (1, Iy, ..., I7). The real octonionic components are thus
replaced with ordinary complex numbers z; = x; + iy;.

2. Importantly, complex conjugation o — © changes only the sign of I; but not! that of ¢ so that
the octonionic inner product (01,02) = 0109 = olfoéék’l becomes complex valued. Norm is equal
to OO = Y. 2. Both norm and inner product are in general complex valued and real valued
only in sub-spaces in which octonionic coordinates are real or imaginary. Sub-spaces have all
possible signatures of metric. These sub-spaces are not closed under multiplication and this has
been an obstacle in the earlier attempts based on the notion of octonion analyticity. This argument
applies also to quaternions and one obtains signatures (1,1,1,1), (1,1,1,—-1), (1,1,—1,—1), and
(1,—-1,—1,—1). Why just the usual Minkowskian signature (1, —1,—1,—1) is physical, should be
understood.

The convention consistent with that used in TGD corresponds to a negative length squared for
space-like vectors and positive for time-like vectors. This gives m = (0°,i0', ...,i07) with real oF.
The projection ME — M? defines the projection of X2 € M3 to X4 C M?® serving as the pre-image
of X* c M® in M® — H correspondence.

3. o is not field anymore as is clear from the fact that 1/0 = 6/00 is formally infinite in Minkowskian
sub-spaces, when octonion defines a light-like vector. o (and H.) remains however a ring so that
sum and products are well-defined but division can lead to problems unless one stays inside 747-
dimensional light-cone with Re(0o) > 0 (Re(qq) > 0).

Although the number field structure is lost, one can still define polynomials needed to define alge-
braic varieties by requiring their simultaneous vanishing and rational functions make sense inside
the light-cone. Also rational functions can be defined but poles are replaced with light-cones in
Minkowskian section. Algebraic geometry would thus be forced by the complexification of octo-
nions. This looks to me highly non-trivial! The extension of zeros and poles to light-cones making
propagation possible could be a good reason for why Minkowskian signature is physical. Interest-
ingly, the allowed octonionic momenta are light-like quaternions [29].
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4. An interesting question is whether ZEO and the emergence of CDs relates to the failure of field
property. It seems now clear that CDs must be assigned even with elementary particles and they
could form an analog for the covering of manifold by coordinate patches (in TGD inspired theory
of consciousness CDs would be correlates for perceptive fields for conscious entities assignable to
CDs [38]). These observations encourage to ask whether the tips of CD should correspond to a pair
formed by two poles/two zeros or by pole and zero assignable to positive and negative energy states.

It turns out that the space-time surfaces in the interior of CD would naturally correspond to
non-associative surfaces and only their 3-D boundaries would have associative 4-D tangent spaces
allowing mapping to H by M8-duality, which is enough by holography.

5. The relationship between light-like 3-surface bounding Minkowskian and Euclidian space-time re-
gions and light-like boundaries of CDs is interesting. Could also the partonic orbits be understood
a singularities of octonionic polynomials with M (P) = RE(P) = 0?7

3.1 What does one really mean with M® — H duality?

The original proposal was that M?® duality should map the associative tangent /normal planes of associative/co-
associative space-time surface containing preferred M?, call it Mg, to C'Pp: the map read as (m,e) €
M* x E* — (m,s) € M* x CP,. Eventually it became clear that the choice of M? can depend on position
with M?(x) forming an integrable distribution to C'Py: this would define what I have called Hamilton-
Jacobi structures [25]. String like objects have minimal surface as M* projection for almost any general
coordinate invariant action, and internal consistency requires that M?(x) integrate to a minimal surface.
The details are however not understood well enough.

1. M* coordinate would correspond simply to projection to a fixed Mg in the decomposition M8 =
M{ x Ej. One can however challenge this interpretation. How Mg is chosen? Is it possible to
choose it uniquely? Could also M* coordinates represent moduli analogous to C'P, coordinates?
What about ZEO?

There is an elegant general manner to formulate the choice of M at the level of M®. The complex-
ified quaternionic sub-spaces of MS (M8) are parameterized by moduli space defining the quater-
nionic moduli. The moduli space in question is C'P,. The choice of M corresponds to fixing of the
quaternionic moduli by fixing a point of C'P;.

Warning: Note that one should be very careful in distinguishing between quaternionic as sub-spaces
of M8 and as the tangent space M® of given point of M3.

2. One can ask whether there could be a connection with ZEO, where CDs play a key role. Indeed, the
complexified Minkowski inner product means that the complexified octonions (quaternions) inside
M$ (M?2) have inverse only inside 7-D (4-D) complexified light-cone and this would motivate the
restriction of space-time surfaces inside future or past light-cone or both but not yet force CD.

If one allows rational functions and even meromorphic functions of octonionic or quaternionic vari-
able, one could consider the possibility of restricting the space-time surface defined as their zeros
to a maximally sized region containing no poles.

3. Consider complexified quaternions H,.. Poles (¢g)~", n > 1 would correspond M* light-cone bound-
aries since gg = 0 at them. Also zeros qg = 0, for n > 1 correspond to light-like boundaries. Could
one have two poles with with time-like distance defining CD or a pair of pole and zero?

There is also a possible connection with the notion of infinite primes [I7]. The notion of infinite
prime leads to the proposal that rationals defined as ratios of infinite integers but having unit real
norm (and also p-adic norms) could correspond pairs of positive and negative energy states with
identical total quantum numbers and located at opposite boundaries of CD. Infinite rationals can
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be mapped to rational functions. Could positive energy states correspond to the numerators with
zeros at second boundary of CD and negative energy states to denominators with zeros at opposite
boundary of CD?

3.1.1 Is the choice of the pair (Mg, M) consistent with the properties of known extremals
in H

It should be made clear that the notion of associativity/co-associativity (quaternionicity/co-quaternionicity)

of the tangent/normal space need not make sense at the level of H. T shall however study this working

hypothesis in the sequel.

The choice of the pair (Mg, M) means choosing preferred co-commutative (commutative) sub-space
Mg of M?® defining a subspace of fixed co-quaternionic (quaternionic) sub-space M§ C M?8.

Remark: M* should indeed be the co-associative/co-quaternionic subspace of M?® if the argument
about emergence of CDs is accepted and if M® — H correspondence maps associative to associative and
co-associative to co-associative.

Mg in turn contains preferred Mg defining co-commutative (hyper-complex) structure. Both Mg and
Mg are needed in order to label the choice by C' P point (that is as a point of Grassmannian).

Is the projection to a fixed factor Mg C M§ x E* as a choice of co-quaternionic moduli consistent
with what we know about the extremals of twistor lift of Kihler action in H? How could one fix Mg
from the data about the extremal in H? One can make similar equations about the choice of Mg as a
fixed co-complex moduli characterized by a unit quaternion. Note that this choice is expected to relate
closely to the twistor structure and Kéhler structure.

It is best to check the proposal for the known extremals in H [25]. Cousider first C' P, type extremals
for which M* projection is a piece of light-like geodesic.

1. The CP, projection for the image of X* C M?® differs from single point only if the tangent space
isomorphic to M* and parameterized by C'P, point varies. Consider CP, type extremals for the
twistor lift of Kihler action [32] in H having light-like geodesic as M* projection as an example.
The light-like geodesic defines a light-like vector in the tangent space of C'P, type extremal. This
light-like vector together with its dual spans fixed M2, which however does not belong to the tangent
space so that associative surface would not be in question.

What about co-associativity or associativity (the latter is favored by above argument)? This prop-
erty should hold true for the pre-image of C'P, type extremal in M® but I am not able to say
anything about this. It is questionable to require this property at the level H but one can of course
look what it would give.

What about associativity for C P, tangent space? The normal space of C' P, type extremal is 3-D
(!) since the only the light-like tangent vector of the geodesic and 2 vectors orthogonal to it are
orthogonal to C'P, tangent vectors. For Euclidian signature this would mean that tangent space is
5-D and cannot be associative but now the tangent space is 4-D. Can one still say that tangent space
is associative. The co-associativity of the tangent space makes sense trivially. Can one conclude
that CP; is co-associative.

The associativity for C'P; tangent space might make sense since the tangent space is 4-D. The
light-like vector k defines MZ. The associativity conditions involving two tangent space vectors
of CP, and the light-like vector k contracted with the corresponding octonion components. The
contributions from the components of k to the associator should cancel each other. Since one can
change the relative sign of the components of k, this mechanism does not seem to work for all
components. Hence associativity cannot hold true. Neither does Mg belong to the normal space
since k and its dual are not orthogonal.

Could one conclude that C'P; type extremal is co-associative in accordance with the original belief
thanks to the light-like projection to M*? This does not conform with what the singularity consid-
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erations for the octonionic polynomials would suggest. Or is it simply not correct to try to apply
associativity at the level of H. Or does M® — H correspondence map associative tangent spaces to
co-associative ones?

2. The normal space M* of C'P, type extremal have all orientations characterized by its C' P, projection.
The normal space must contain the Mg determined by the tangent of the light-like geodesic and
this is indeed the case. Note that C'P, type extremals cannot have entire C'P, as C'P, projection:
they necessarily have hole at either end, which would be naturally be at the boundary of CD.

CP, type extremals seem to be consistent with M® — H correspondence. It however seems that
one cannot fix the choice of M{ uniquely in terms of the properties of the extremal. There is a
moduli space for Mg:s defined by C'P, and obviously codes for moduli for quaternion structures
in octonionic space. The distributions of M?(z) (minimal surfaces) would code for quaternion
structures (decomposition of octonionic coordinates to quaternionic coordinates in turn decomposing
to pairs of complex coordinates).

Consider next the associativity condition for cosmic strings in X2 x Y2 ¢ M* x CP,. Now CPs
projection is 2-D complex surfaces and M* projection is minimal surface. Situation is clearly associative.
How unique the choice of M is now?

1. Now M?(z) depends on position but M?(z):s define an integrable distribution defining string orbit
X? as a minimal surface. M{ must contain all surfaces M?(z), which would fix M to a high degree
for complex enough cosmic strings.

2. Each point of X? corresponds to the same partonic surface Y2 C CP, labelling the tangent spaces

for its pre-image in M®. All the tangent surfaces M?(x) x E?(y) for X2 x Y2 C M® share only
M?(z) C Mg. M{ must contain all tangent spaces M?(z) and the inverse image of Y2 C C'P, must
belong to the orthogonal complement E* of M. This is completely analogous with the condition
X2=X?2xY?2C M*xCDPs,.
Consider a decomposition M® = M§ x B4, M§ = M2 x EZ. If the inverse image of Y2 at point
belongs to E*4, the M{ projection belongs to Mg also in M®. If this does not pose any condition
on the tangent spaces assignable to the points of Y2 defining points of C'P,, there are no problems.
What could happen that the tangent spaces assignable to Y2 could force the projection of the
inverse image of Y2 to intersect Mg.

One should also understand massless extremals (MEs). How to choose Mg in this case?

1. MEs are given as zeros of arbitrary functions of C'P, coordinates and 2 M* coordinates u and v
representing local light-like direction and polarization direction orthogonal to it. In the simplest
situation these directions are constant and define M§ = M2 x E2 decomposition everywhere so that
Mg is uniquely defined. Same applies also when the directions are not constant. In the general case
light-like direction would define the local tangent plane of string world sheet and local polarization
plane. Since the dimension of M* projection is 4 there seems to be no problems involved.

2. Tangent plane of X* is parameterized by C P, coordinates depending on 2 coordinates u and v. The
surface X4 C M® must be graph for a map M§ — E* so that a 2-parameter deformation of M as
tangent plane is in question. The distribution of tangent planes of X* C M?® is 2-D as is also the
C P, projection in H.

To sum up, the original vision about the associativity properties of the known extremals at level of H
survives. On the other hand, CDs emerge if M* corresponds to the co-associative part of O. Does this
mean that M® — H correspondence maps associative to co-associative by multiplying the quaternionic
tangent space in M® by I to get that in H and vice versa or that the notions of associative and co-
associative do not make sense at the level of H? This does not affect the correspondence since the same
CP, point parametrizes both associative tangent space and its complement.
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3.1.2 Space-time surfaces as co-dimension 4 algebraic varieties defined by the vanishing of
real or imaginary part of octonionic polynomial?

If the theory intended to be a theory of everything, the solution ansatz for the field equations defining
space-time surfaces should be ambitious enough: nothing less than a general solution of field equations
should be in question.

1. One cannot exclude the possibility that all analytic functions of complexified octonionic variable
with real Taylor or even Laurent coefficients. These would would a commutative and associative
algebra. Space-time surfaces would be identified as their zero loci. This option is however number
theoretically attractive and can also leads to problems with adelic physics. Since Taylor series at
rational point need not anymore give a rational value.

2. Polynomials of complexified octonion variable o with real coefficients define the simplest option but
also rational functions formed as ratios of this kind of polynomials must be considered. Polynomials
form a non-associative ring allowing sum, product, and functional decomposition as basic operations.
If the coefficients o,, of polynomials are complex numbers o,, = a,, +1ib,, a,, b, real, where ¢ refers to
the commutative imaginary unit complexifying the octonions, the ring is associative. It is essential
to allow only powers o™ (or (0 — 0p))™ with o9 = ag + ibg, ag,bp real numbers). Physically this
means that a preferred time axis is fixed. This time axis could connect the tips of CD in ZEO.

One can write
P(O) = kakok = RE(P)(QlaQ%ﬁa%) + IM(P)(q17qQaQT’§2) X I4 » Pk real )

where the notations

J

o=q+aqly, =2z +2L , g =2 —2L ,zl =zl +iy!

(3.2)

Note that the conjugation does not change the sign of i. Due to the non-commutativity of octonions
P? as functions of quaternions are in general not analytic in the sense that they would be polynomials
of ¢; with real coefficients! They are however analytic functions of z;. The real and imaginary parts
of 2! correspond to Minkowskian and Euclidian signatures.

In adelic physics coefficients o,, of the octonionic polynomials define WCW coordinates and should
be rational numbers or rationals in the extension of rationals defining the adele. The polynomials
form an associative algebra since associativity holds for powers 0™ multiplied by real number. Thus
complex analyticity crucial in algebraic geometry would be a key element of adelic physics.

3. If the preferred extremals correspond to the associative algebra formed by these polynomials, one
could construct a completely general solution of the field equations as zero loci of their real or
imaginary parts and build up of new solutions using algebra operation sum, product, and functional
decomposition. One could identify space-time regions as associative or co-associative algebraic
varieties in terms of these polynomials and they would form an algebra.

The motivation for this dream comes from 2-D electrostatics, where conducting surfaces correspond
to curves at which the real part w or imaginary part v of analytic function w = f(z) = u+ v vanishes. In
electrostatics curves form families with curves orthogonal to each other locally and the map w = u+iv —
v —tu defines a duality in which curves of constant potential and the curves defining their normal vectors
are mapped to each other.
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1. The generalization to the recent situation would be vanishing of the imaginary part IM(P) or
real part RE(P) of the octonionic polynomial, where real and imaginary parts are defined via
0 = q! + ¢21;. One can consider also the possibility that imaginary or real part has constant value
c are restricted to be rational so that one can regard the constant value set also as zero set for a
polynomial with constant shift. Note that the rationals could be also complexified by addition of <.
One would have

RE(P)(zF) or IM(P)(zF)=c , c=cy rational .

K2 K2

(3.3)

co must be real. These two options should correspond to the situations in which tangent space or
normal space is associative (associativity/co-associativity). Complexified space-time surfaces X2
corresponding to different constant values ¢ of imaginary or real part (with respect to i) would
define foliations of M2 by locally orthogonal 4-dimensional surfaces in M such that normal space
for surface X would be tangent space for its co-surface.

2. It must be noticed that one has moduli space for the quaternionic structures even when Mg is fixed.
The simplest choices of complexified quaternionic space H, = M, f,o containing preferred complex
plane Mc2,0 and its orthogonal complement are parameterized by C'P,. More complex choices are
characterized by the choice of distribution of M?(z) integrable to (presumably minimal) 2-surface
in M*. Also the choice of the origin matters as found and one has preferred coordinates. Also the
8-D Lorentz boosts give rise to further quaternionic moduli. The physically interesting question
concerns the interpretation of space-time surfaces with different moduli. For instance, under which
conditions they can interact?

The proposal has several extremely nice features.

1. Single real valued polynomial of real coordinate extended to octonionic polynomial and fixed by
real coeflicients in extension of rationals would determine space-time surfaces.

2. The notion of analyticity needed in concrete equations is just the ordinary complex analyticity
forced by the octonionic complexification: there is no need for the application to have left- or right
quaternion analyticity since quaternionic derivatives are not needed. Algebraically one has the
most obvious guess for the counterpart of real analyticity for polynomials generalized to octonionic
framework and there is no need for the quaternionic generalization of Cauchy-Riemann equations
[T, @] [T, 4] (http://tinyurl.com/yb8134b5) plagued by the problems with the definition of dif-
ferentiation in non-commutative and non-associative context. There would be no problems with
non-associativity and non-commutativity thanks to commutativity of complex coordinates with
octonionic units.

3. The vanishing of the real or imaginary part gives rise to 4 conditions for 8 complex coordinates
zF and 2% allowing to solve 2§ as algebraic functions z§ = f*(z!) or vice versa. The conditions
would reduce to algebraic geometry in complex co-dimension d. = 4 and all methods and concepts
of algebraic geometry can be used! Algebraic geometry would become part of TGD as it is part of

M-theory too.

3.2 Is the associativity of tangent-/normal spaces really achieved?

The non-trivial challenge is to prove that the tangent/normal spaces are indeed associative for the two
options. The surfaces X2 are indeed associative/co-associative if one considers the internal geometry
since points are in M2 or its orthogonal complement.
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One should however prove that X2 are also associative as sub-manifolds of O and therefore have
quaternionic tangent space or normal space at each point parameterized by a point of C'P; in the case
that tangent space containing position dependent M2, which integrate to what might be called a 2-D
complexified string world sheet inside M2.

1. The first thing to notice that associativity and quaternionicity need not be identical concepts. Any
surface with complex dimension d < 4 in O is associative and any surface with dimension d > 4 co-
associative. Quaternionic and co-quaternionic surfaces are 4-D by definition. One can of course ask
whether one should consider a generalization of brane hierarchy of M-theory also in TGD context
and allow associativity in its most general sense. In fact, the study of singularity of 0? shows that 6
and 5-dimensional surfaces are allowed for which the only interpretation would be as co-associative
spaces. This exceptional situation is due to the additional symmetries increasing the dimension of
the zero locus.

2. One has clearly quaternionicity at the level of o obtained by putting Y = 0 and at the level of the
tangent space for the resulting surface. The tangent space should be quaternionic. The Jacobian
of the map defined by P is such that it takes fixed quaternionic subspace H, — M{ic of O to a
quaternionic tangent space of X*. The Jacobian applied to the vectors of H,. gives the octonionic
tangent vectors and they should span a quaternionic sub-space.

3. The notion of quaternionic surface is rigorous. M®— H correspondence could be actually interpreted
in terms of the construction of quaternionic surface in M®. One has 4-D integrable distribution
of quaternionic planes in O with given quaternion structure labelled by points of CP, and has
representation at the level of H as space-time surface and should be preferred extremals. These
quaternion planes should integrate to a slicing by 4-surfaces and their duals. One obtains this
slicing by fixing the values 4 of the suitably defined octonionic coordinates P?, i = 1,..,8, to a real
constants depending on the surface of the slicing. This gives a space-time surfaces for which tangent
space-spaces or normal spaces are quaternionic.

The first guess for these coordinates P! be as real or imaginary parts of real polynomials P(0). But
how to prove and understand this?

Could the following argument be more than wishful thinking?

1. In complex case an analytic function w(z) = u + v of z = x + iy mediates a map between complex
planes Z and W. One can interpret the imaginary unit appearing in w locally as a tangent vector
along u = constant coordinate line.

2. One can interpret also octonionic polynomials with real coefficients as mediating a map from octo-
nionic plane O to second octonionic plane, call if W. The decomposition P = PY + P2, would
have interpretation in terms of coordinates of W with coordinate lines representing quaternions and
co-quaternions.

3. This would suggests that the quaternionic coordinate lines in W can be identified as coordinate
curves in O - that space-time surfaces - which are quaternionic/co-quaternionic surfaces for P! =
constant/P? = constant lines. One would have a representation of the same thing in two spaces,
and if sameness includes also quaternionicity/co-quaternionicity as attributes, then also associativity
and co-associativity should hold true.

The most reasonable approach is based on generality. Associativity/quaternionicity means a slicing
of octonion space by orthogonal quaternionic and co-quaternionic 4-D surfaces defined by constant value
surfaces of octonionic polynomial with real coefficients. This slicing should make sense also for quater-
nions: one should have a slicing by complex and co-complex (commutative/co-commutative) surfaces and
in TGD string world sheets and partonic 2-surfaces assignable to Hamilton-Jacobi structure would define
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this kind of slicing. In the case of complex numbers one has a slicing in terms of constant value curves for
real and imaginary parts of analytic function and Cauchy-Riemann equations should define the property
and co-property. The first guess that the tangent space of the curve is real or imaginary is wrong.

3.2.1 Could associativity and commutativity conditions be seen as a generalization of
Cauchy-Rieman conditions?

Quaternionicity in the octonionic case, complexity in quaternionic case, and what-ever-it-is in complex
case should be seen as a 3-levelled hierarchy of geometric conditions satisfied by polynomial maps with real
coefficients for polynomials in case of octonions and quaternions. Of course, also Taylor and even Laurent
series might be considered. The ”whatever-it-is” cannot be nothing but Cauchy-Riemann conditions
defining complex analyticity for complex maps.

The hierarchy looks obvious. In the case of Cauchy-Riemann conditions one has commutative and
associative structure and Cauchy-Riemann conditions are linear in the partial derivatives. In the case of
commutative sub-manifolds of quaternionic space the conditions are quadratic in the partial derivatives. In
the case of associative sub-manifolds of octonionic space the conditions are trilinear in partial derivatives.
One would have nothing but a generalization of Cauchy-Riemann equations to multilinear equations in
dimensions D = 2F, k = 1,2,3: k-linearity with k = 1,2, 3!

One can continue the hierarchy of division algebras by assuming only algebra property by using Cayley-
Dickson construction (see http://tinyurl.com/ybuyla2k)) by adding repeatedly a non-commuting imag-
inary unit to the structure already obtained and thus doubling the dimension of the algebra each time.
Polynomials with real coefficients should still define an associative and commutative algebra if the pro-
posal is to make sense. All these algebras are indeed power associative: one has 2™z"™ = z™%". For
instance, sedenions define 16-D algebra. Could this hierarchy corresponds to a hierarchy of analyticities
satisfying generalized Cauchy-Riemann conditions?

3.2.2 Complex curves in real plane cannot have real tangent space

Going from octonions to quaternions to complex numbers, could constant value curves of real and imag-
inary parts of ordinary analytic function in complex plane make sense? The curves v = 0 and v = 0
of functions f(z) = u + v, z = x + iy define a slicing of plane by orthogonal curves completely analo-
gous to its octonionic and quaternionic variants. Can one say that the tangent vectors for these curves
are real/imaginary? For u = 0 these curves have tangent 0,u + i0,u, which is not real unless one has
f(z) = k(x + iy), k real.

Reality condition is clearly too strong. In fact, it is the well-ordering of the points of the 1-dimensional
curve, which is the property in question and lost for complex numbers and regained at © =0 and v = 0
curves. The reasonable interpretation is in terms of hierarchy of conditions multilinear in the gradients
of coordinates proposed above and linear Cauchy-Riemann conditions is the only option in the case of
complex plane. What is special in this curves that the tangent vectors define flows which by Cauchy-
Riemann conditions are divergenceless and irrotational locally.

Pessimistic would conclude that since the conjecture fails except for linear polynomials in complex
case, it fails also in the case of quaternions and octonions. For quaternionic polynomial ¢? the conditions
are however satisfied and it turns out that the resulting conditions make sense also in the general case.
Optimistic would argue that reality condition is not analogous to commutativity and associativity so
that this example tells nothing. Less enthusiastic optimist might admit that the reality condition is a
natural generalization to complex case but that the conjecture might be true only for a restricted set of
polynomials - in complex case of for f(z) = kz, k real. In quaternionic and octonionic case but hopefully
for a larger set of polynomials with real coefficients, maybe even all polynomials with real coefficients.

ISSN: 2153-8301 Prespacetime Journal www.prespacetime.com
Published by QuantumDream, Inc.


http://tinyurl.com/ybuyla2k

Prespacetime Journal | August 2017 | Volume 8 | Issue 8 | pp. 900-937 921
Pitkdnen, M., Does M® — H Duality Reduce Classical TGD to Octonionic Algebraic Geometry? (Part I)

3.2.3 Associativity and commmutativity conditions as a generalization of Cauchy-Rieman
conditions?

Quaternionicity in the octonionic case, complexity in quaternionic case, and what-ever-it-is in complex
case should be seen as a 3-levelled hierarchy of geometric conditions satisfied by polynomial maps with
real coefficients for polynomials in case of octonions and quaternions. Of course, also Taylor and even
Laurent series might be considered. ”Whatever-it-is” cannot be nothing but Cauchy-Riemann conditions
defining complex analyticity for complex maps.

The hierarchy looks obvious. In the case of Cauchy-Riemann conditions one has commutative and
associative structure and Cauchy-Riemann conditions are linear in the partial derivatives. In the case of
commutative sub-manifolds of quaternionic space the conditions are quadratic in the partial derivatives. In
the case of associative sub-manifolds of octonionic space the conditions are trilinear in partial derivatives.
One would have nothing but a generalization of Cauchy-Riemann equations to multilinear equations in
dimensions D = 2%, k = 1,2, 3: k-linearity with k = 1,2, 3!

One can continue the hierarchy of number fields by assuming only algebra property by adding addi-
tional imaginary units as done in Cayley-Hamilton construction (see http://tinyurl.com/ybuyla2k) by
adding repeatedly a non-commuting imaginary unit to the algebra already obtained and thus doubling
the dimension of the algebra each time. Polynomials with real coefficients should still define an associative
and commutative algebra if the proposal is to make sense. All these algebras are indeed power associative:
one has z™z™ = ™%, For instance, sedenions define 16-D algebra. Could this hierarchy corresponds
to a hierarchy of analyticities satisfying generalized Cauchy-Riemann conditions? Could this hierarchy
corresponds to a hierarchy of analyticities satisfying generalized Cauchy-Riemann conditions?

One would have also a nice physical interpretation: in the case of quaternions one would have ” quater-
nionic conformal invariance” as conformal invariances inside string world sheets and partonic 2-surfaces
in a nice agreement with basic vision about TGD. At the level of octonions would have ”quaternionic
conformal invariance” inside space-time surfaces and their duals. What selects the preferred commutative
or co-commutative surfaces is of course an interesting problem. Is a gauge choice in question? Are these
surfaces selected by some special property such as singular character? Or does one have wave function in
the set of these surfaces for a given space-time surface?

3.2.4 Could quaternionic polynomials define complex and co-complex surfaces in H_.?7

What about complex and co-complex (commutative/co-commutative) surfaces in the space of quater-
nions? One would have a slicing of the quaternionic space by pairs of complex and co-complex surfaces
and would have natural identification as quaternion/Hamilton-Jacobi structure and relate to the decom-
position of space-time to string world sheets and partonic 2-surfaces. Now the condition of associativity
would be replaced with commutativity.

1. In the quaternionic case the tangent vectors of the 2-D complex sub-variety would be commuting.
Can this be the case for the zero loci real polynomials P(g) with IM(P) =0 or RE(P) = 0?7 In this
case the commutativity condition is that the tangent vectors have imaginary parts (as quaternions)
proportional to each other but can have different real parts. The vanishing of cross product is the
condition now and involves only two vectors whereas associativity condition involves 3 vectors and
is more difficult.

2. The tangent vectors of a commutative 2-surface commute: [t!,#?] = 0. The commutator reduces to
the vanishing of the cross product for the imaginary parts:

Im(t') x Im(t?) =0 .
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3. Expressing 2! as a function of z§ and using (2%, zé’c ) as coordinates in quaternionic space, the tangent

vectors in quaternionic spaces can be written in terms of partial derivatives 8z1) / 822) as

i)
O3 50 | (3.5)

o= (5%
525)

Here the first part corresponds to RE(t') as quaternion and second part to M (t) as quaternion.

The condition that the vectors are parallel implies

82% )
8z§ )

=0 . (3.6)

At the commutative 2-surface X2 zi ) is constant and zf) is a function of z;) and z?. One would have

1)

a graph of a function zf) = fo (z:;c )) at X? but not elsewhere. One could regard z;’ as an extremum

of function z; V= f (zéf )). There is no obvious reason why the extremum condition could not make
sense. and result might be consistent with the property of being real quaternion polynomial.

How to interpret this result?

1. In the generic case this condition eliminates 1 dimension so that that 2-D surface would reduce to
a 1-D curve. This was a cold shower.

2. If one poses constraints on the coefficients of P(q) analogous to the conditions forcing the potential
function for say cusp catastrophe to have degenerate extrema at the boundaries of the catastrophe
one can get 2-D solution. For these values of parameters the conditions would be equivalent with
RE(P) =0 or IM(P) = 0 conditions.

The vanishing of the gradient of z{ would indeed correspond in the case of cups catastrophe to
the condition for the co-incidence of two roots of the behavior variable x as extremum of potential
function V(x,a,b) fixing the control variable a as function of b.

This would pose constraints on the coefficients of P not all polynomials would be allowed. This
kind of conditions would realize the idea of quantum criticality of TGD at the level of quaternion
polynomials. This option is attractive if realizable also at the level of octonion polynomials. This
turns out to be the case.

3. One would thus have two kinds of commutative/co-commutative surfaces. The generic 1-D surfaces
and 2-D ones which are commutative/commutative and critical and assignable to string world sheets
and partonic 2-surfaces. 1-D surfaces would correspond to fermion lines at the orbits of partonic 2-
surfaces appearing in the twistor amplitudes in the interaction regions defined by CDS. 2-D surfaces
would correspond to the orbits of fermionic strings connecting point-like fermions at their ends and
serving as correlates for bound state entanglement for external fermions arriving into CD. This
picture would allow also to understand why just some string world sheets and partonic 2-surfaces
are selected.

The simplest manner to kill the proposal is to look for P = ¢? and RE(P(q?)) = 0 surface. In this
case this condition is indeed satisfied. One has
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RE(P)=XY +X%1, ,

1 2 1 2 1) 2
XY= ()2 = () + ()2 - (), XV =2:0201

(3.7)
IM(P)=YY +Y?1, |
YD = (5 + 2 YD = (5 + )
X2 = 0 gives z})zf) = 0 so that one has either zi) =0 or zf) =0. XY = 0 gives for z}) =0

2 =1/ ()2 + (23)2.

The partial derivative 82’%) / 82’5) is from implicit function theorem - following from the vanishing of

the differential d(RE(P)) along the surface - proportional 0X ")/ 8z§ ), but vanishes as required.

Clearly, the quaternionic variant of the proposal survives in the simplest case its simplest test. 2-D
character of the surface would be due to the criticality of ¢> making it possible to satisfy the conditions
without the reduction of dimension.

3.2.5 Explicit form of associativity /quaternionicity conditions
Consider now the explicit conditions for associativity.

1. One should calculate the octonionic tangent (normal) vectors t* for X = 0 in associative (Y = 0
in co-associative case) and show that there associators Ass(t!,¢/,*) vanish for all possible or all
possible combinations i, j, k. In other words, one that one has

Ass(ti, 9 tF) =0 , 4,5,k € {1,..,4} , Ass(a,b,c) = (ab)c — a(bc) .

(3.8)
One can cast the condition to simpler from by expressing ¢’ as octonionic vectors t};Ek:
Ass(E® Eb EY) == fedp, | a,b,c,d€ {1,.,7} ,
fabcd — €abe€ecd _ 6aedEbce — 2€abeeecd .
(3.9)

The permutation symbols for a given triplet 4, j, k are structures constants for quaternionic inner
product and completely antisymmetric (see http://tinyurl.com/p42tqsq).. €;;; = 1 is true for the
seven triplets 123,145,176, 246, 257, 347, 365 defining quaternionic sub-spaces with 1-D intersections.
The anti-associativity condition (E;E;)E, = —(E;E;)E) holds true so that one has obtains the
simpler expression for f¥*¢ having values 42.

Using this representation Ass(t*,t7,t* ) reduces to 7 conditions for each triplet:

titlth frstv =0 Q.5 ke {1,..,4} , r s t,ue{l,. T} .
(3.10)
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2. If the vanishing condition X = 0 or Y = 0 is crucial for associativity then every polynomial is its
own case to be studied separately and a general principle behind associativity should be identified:
the proposal is as a non-linear generalization of Cauchy-Riemann conditions. As the following
little calculation shows, the vanishing condition indeed appears as one calculates partial derivatives
82? / 829 in the expression for the tangent vectors of the surface deduced from the vanishing gradient
of X orY.

3. I have proposed the octonionic polynomial ansatz already earlier but failed to prove that it gives

associative tangent or normal spaces. Besides the intuitive geometric argument I failed to notice

that the complex 8-D tangent vectors in coordinates zf )

and coordinates (zlf ), z§ )) for o have components

k . .
or 22) for complexified space-time surface

oi)

9o i 0%y
T ¢ ( %)
0z}, k> 321)

or

i 9 i
(99) & (2Z5,41) .

9z 32;“) ’
(3.11)
These vectors correspond to complexified octonions O; given by
i ok 0z k
SLE" + —EFE, (3.12)
92"
1

where the unit octonions are given by (Eo, E1, F2, E3) = (1,11, I2,I3) and (Es, Es, E7, Eg) =
(1,11, I, I3) E4. The vanishing of the associators stating that one has

9zF
BzzC
valued quaternionic components of RE(P) =X =0 or IM(P) =Y =0 (note that X and Y have

for complex components labelled by X® and Y respectively.

4. One can calculate the partial derivatives explicitly without solving the equations or the complex

Yi(zf),zé)) =ceR, i=1,..,4 , associativity ,
or

Xi(zf),zé)) =ceR , 1=1,..,4 , co-associativity .
(3.13)

explicitly and check whether associativity holds true. The derivatives can be deduced from the
constancy of Y or X.

k)

5. For instance, if one has z, )

. k S s
as function of z;”, one obtains in the associative case
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i ;920
Xik+vid=2 —o
r Dzl)
i — 9Y" i — OY"
Xk‘_allc) ’ Yk_az;‘)

(3.14)
In co-associative case one must consider normal vectors expressible in terms of Y so that X is

replaced with Y in these equations.

This allows to solve the partial derivatives needed in associator conditions

05 _ [y 1" X, (3.15)

6. The vanishing conditions for the associators are however multilinear and one can multiply each
factor by the matrix Y without affecting the condition so that Y ~! disappears and one obtains the
conditions for vectors

TITITEfrste =0 | 0,5, ke {l,..,4} , rstiue{l,. . 7},

T =YX} .
(3.16)

This form of conditions is computationally much more convenient.
How to solve these equations?

1. The antisymmetry of f7*** with respect to the first two indices r, s leads one to ask whether one
could have

TITIT) =0 (3.17)

for the 7 quaternionic triplets. This is guaranteed if one has either RE(Y)?, = 9Y'/02F = 0
(coquaternionic part of T%) or IM(Y)!, = 0Y*?/9z5 = 0 (co-quaternionic part of T%) for one
member in each triplet.

The study of the structure constants listed above shows that indices 1,2,3 are contained in all 7
triplets. Same holds for the indices appearing in any quaternionic triplet. Hence it is enough to
require that three gradients RE(Y )"k = 0 or IM(Y)",, = 0 k € {1,2,3} vanish. This condition is
obviously too strong since already single vanishing condition reduces the dimension of space-time
variety to 3 in the generic case and it becomes trivially associative.

Octonionic automorphism group G, gives additional basis with their own quaternion triplets and
the general condition would be that 3 partial derivatives vanish for a triplet obtained from the basic
triplet {1,2,3} by G5 transformation. It is not quite clear to me whether the G5 transformation
can depend on position on space-time surface.
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2. As noticed, the vanishing of all triplets is an un-necessarily strong condition. Already the vanishing
of single gradient RE(Y)?, or IM(Y)?, reduces the dimension of the surface from 4 to 3 in the
generic case. If one accepts that the dimension of associative surface is lower than 4 then single
criticality condition is enough to obtain 3-D surface.

In the generic case associativity holds true only at the 4-D tangent spaces of 3-surfaces at the ends
of CD (at light-like partonic orbits it holds true trivially in 4-D) and that the twistor lift of Kéhler
action determines the space-time surfaces in their interior.

In this case one can map only the boundaries of space-time surface by M® — H duality to H. At first
this looks like a catastrophe but this is not the case. The criticality at these 3-surfaces dictates the
boundary conditions and provides a solution to infinite number of conditions stating the vanishing
of SSA Noether charges at space-like boundaries. These space-time regions would correspond to the
regions of space-time surfaces inside CDs identifiable as interaction regions, where Kéahler action
and volume term couple and dynamics depends on coupling constants.

The mappability of M® dynamics to H dynamics in all space-time regions does not look feasible: the
dynamics of octonionic polynomials involves no coupling constants whereas twistor lift of Kéahler
action involves couplings parameters. The dynamics would be non-associative in the geometric
sense in the interior of CDs. Notice that also conformal field theories involve slight breaking of
associativity and that octonions break associativity only slightly (a(bc) = —(ab)c for octonionic
imaginary units). I have discussed the breaking of associativity from TGD viewpoint in [26].

3. Twistor lift of Kahler action allows also space-time regions, which are minimal surfaces [32] and for
which the coupling between Kéahler action and volume term vanishes. Preferred extremal property
reduces to the existence of Hamilton-Jacobi structure as image of the quaternionic structure at
the level of M8. The dynamics is universal as also critical dynamics and independent of coupling
constants so that M8 — H duality makes sense for it. External particles arriving into CD via its
boundaries would correspond to critical 4-surfaces: I have discussed their interpretation from the
perspective of physics and biology in [33].

4. One should be able to produce associativity without the reduction of dimension. One can indeed
hope of obtaining 4-D associative surfaces by posing conditions on the coefficients of the polynomial
P by requiring that one RE(Y)% or IM(Y)i, i = iy -call it just X; - should vanish so that Y would

be critical as function of z¥ or 2.

At X; = 0 would have degenerate zero at the 4-surface. The decomposition of X; to a product
of monomial factors with root in extension of rationals would have one or more factors appearing
at least twice. The associative 4-surfaces would be ramified. Also the physically interesting p-adic
primes are conjectured to be ramified in the sense that their decomposition to primes of extension
of rationals contains powers of primes of extension. The ramification of the monomial factors is
nothing but ramification for polynomials primes in field of rationals in terms of polynomial primes
in its extension.

This could lead to vanishing of say one triplet while keeping D = 4. This need not however give
rise to associativity in which case also second RE(Y')! or IM (Y}, i = iy, call it X5, should vanish.
The maximal number of X; would be n,,,, = 3. The natural condition consistent with quantum
criticality of TGD Universe would be that the variety is associative but maximally quantum critical
and has therefore dimension D = 3 or D = 4. Stronger condition allows only D = 4.

These n < 3 additional conditions make the space-time surface analogous to a catastrophe with
n < 3 behavior variables in Thom’s classification of 7 elementary catastrophes with less than 11
control variables [I]. Thom’s theory does not apply now since it has only one potential function
V(x) (now n < 3 corresponding to the critical coordinates Y?!) as a function of behaviour variables
and control variables). Also the number of non-vanishing coefficients in the polynomial having
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values in an extension of rationals and acting as control variables is unlimited. In quaternionic case
the number of potential functions is indeed 1 but the number of control variables unlimited.

5. One should be able to understand the D = 3 associative objects - say light-like 3-surfaces or 3-
surfaces at the boundaries of CD - as 3-surfaces along which 4-D associative (co-associative) and
non-associative (non-co-associative) surfaces are glued together.

Consider a product P of polynomials allowing 3-D surfaces as necessarily associative zero loci to
which a small interaction polynomial vanishing at the boundaries of CD (proportional to o™, n > 1)
is added. Could P allow 4-D surface as a zero locus of real or imaginary part and containing the
light-like 3-surfaces thanks to the presence of additional parameters coming from the interaction
polynomial. Can one say that this small interaction polynomial would generate 4-D space-time in
some sense? 4-D associative space-time regions would naturally emerge from the increasing algebraic
complexity both via the increase of the degree of the polynomial and the increase of the dimension
of the extension of rationals making it easier to satisfy the criticality conditions!

There are two regions to be considered: the interior and exterior of CD. Could associativity/co-
associativity be possible outside CD but not inside CD so that one would indeed have free external
particles entering to the non-associative interaction region. Why associativity conditions would
be more difficult to satisfy inside CD? Certainly the space-likeness of M* points with respect to
the preferred origin of M?® in this region should be crucial since Minkowski norm appears in the
expressions of RE(P) and IM(P).

Do the calculations for the associative case generalize to the co-associative case?

1. Suppose that one has possibly associative surface having RE(P) = 0 (as suggested by the emergence
of CDs for this choice). One would have IM(P) = 0 for dual space-time surface defining locally
normal space of RE(P) = 0 surface. This would transform the co-associativity conditions to
associativity conditions and the preceding arguments should go through essentially as such.

Associative and co-associative surfaces would meet at singularity RE(P) = IM(P) = 0, which need
not be point in Minkowskian signature (see P = 0? example in the Appendix) and can be even 4-D!
This raises the possibility that the associative and co-associative surfaces defined by RE(P) = 0
and IM (P) = 0 meet along 3-D light-like orbits partonic surfaces or 3-D ends of space-time surfaces
at the ends of CD.

2. If D = 3 for associative surfaces are allowed besides D = 4 as boundaries of 4-surfaces, one can
ask why not allow D = 5 for co-associative surfaces. It seems that they do not have a reasonable
interpretation as a surface at which co-associative and non-co-associative 4-D space-time regions
would meet. Or could they in some sense be geometric ”co-boundaries” of 4-surfaces like branes
in M-theory serve as co-boundaries of strings? Could this mean that 4-D space-time-surface is
boundary of 5-D co-associative surface defining a TGD variant of brane with strings world sheets
replaced with 4-D space-time surfaces?

What came as a surprise that P = 0% allows 5-D and 6-D surfaces as zero loci of RE(P) or IM(P)
as shown in Appendix. The vanishing of the entire 02 gives 4-D interior or exterior of CD forced
also by associativity/co-associativity and thus maximal quantum criticality. This is very probably
due to the special properties of 0% as polynomial: in the generic case the zero loci should be 4-D.

This discussion can be repeated for complex/co-complex surfaces inside space-time surfaces associated
with fermionic dynamics.

1. Associativity condition does not force string world sheets and partonic 2-surfaces but they could
naturally correspond to commutative or co-commutative varieties inside associative/co-associative
varieties.
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In the generic case commutativity /co-commutativity allows only 1-D curves - naturally light-like
fermionic world lines at the boundaries of partonic orbits and representing interacting point-like
fermions inside CDs and used in the construction of twistor amplitudes [28] [29]. There is coupling
between Kéhler part and volume parts of modified Dirac action inside CDs so that coupling constants
are visible in the spinor dynamics and in dynamics of string world sheet.

2. At criticality one obtains 2-D commutative/co-commutative surfaces necessarily associated with
external particles quantum critical in 4-D sense and allowing quaternionic structure. String world
sheets would serve as correlates for bound state entanglement between fermions at their ends.
Criticality condition would select string world sheets and partonic 2-surfacs from the slicing of
space-time surface provided by quaternionic structure (having Hamilton-Jacobi structure as H-
counterpart).

If associativity holds true and fixed M? is contained in the tangent space of space-time surface, one
can map the M* projection of the space-time surface to a surface in M* x CP, so that the quaternionic
tangent space at given point is mapped to CP, point. One obtains 4-D surface in H = M* x CP,.

1. The condition that fixed M2 belongs to the tangent space of X2 is true in the sense that the
coordinates 25 ) do not depend on z% ) and z% ) defining the coordinates of M2. It is not clear whether
this condition can be satisfied in the general case: octonionic polynomials are expected to imply
this dependence un-avoidably.

The more general condition allows M? to depend on position but assumes that M?2:s associated
with different points integrate to a family 2-D surfaces defining a family of complexified string world
sheets. In the similar manner the orthogonal complements E? of M2 would integrate to a family
of partonic 2-surfaces. At each point these two tangent spaces and their real projections would
define a decomposition analogous to that define by light-like momentum vector and polarization
vector orthogonal to it. This decomposition would define decomposition of quaternionic sub-spaces
to complexified complex subspace and its co-complex normal space. The decomposition would
correspond to Hamilton-Jacobi structure proposed to be central aspect of extremals [25].

2. What is nice that this decomposition of M2 (M*) would (and of course should!) follow automatically
from the octonionic decomposition. This decomposition is lower-dimensional analog to that of the
complexified octonionic space induced by level sets of real octonionic polymials but at lower level
and extremely natural due to the inclusion hierarchy of classical number fields. Also M? could have
similar decomposition orthogonal complex curves by the value sets of polynomials. The hierarchy of
grids means the realization of the coordinate grid consisting of quaternionic, complex, and real curves
for complexified coordinates oF and their quaternionic and complex variants and is accompanied by
corresponding real grids obtained by projecting to M* and mapping to CPs.

Thus these decompositions would be obtained from the octonionic polynomial decomposing it to real
quaternionic and imaginary quaternionic parts first to get a grid of space-time surfaces as constant
value sets of either real or imaginary part, doing the same for the non-constant quaternionic part of
the octonionic polynomial to get similar grid of complexified 2-surfaces, and repeating this for the
complexified complex octonionic part.

Unfortunately, I do not have computer power to check the associativity directly by symbolic calcula-
tion. I hope that the reader could perform the numerical calculations in non-trivial cases to to this!

3.2.6 General view about solutions to RE(P) =0 and IM(P) = 0 conditions

The first challenge is to understand at general level the nature of RE(P) = 0 and IM(P) = 0 conditions.
Appendix shows explicitly for P(0) = 0? that Minkowski signature gives rise to unexpected phenomena.
In the following these phenomena are shown to be completely general but not quite what one obtains for
P(0) = 0% having double root at origin.
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1. Consider first the octonionic polynomials P(o) satisfying P(0) = 0 restricted to the light-like bound-
ary 6M§ assignable to 8-D CD, where the octonionic norm of o vanishes.

(a) P(o) reduces along each light-ray of §M$ to the same real valued polynomial P(t) of a real
variable ¢ apart from a multiplicative unit E = (1 +in)/2 satisfying E? = E. Here n is purely
octonion-imaginary unit vector defining the direction of the light-ray.

IM(P) = 0 corresponds to quaterniocity. If the E* (M8 = M* x E*) projection is vanishing,
there is no additional condition. 4-D light-cones M4 are obtained as solutions of 1M (P) = 0.
Note that M$ can correspond to any quaternionic subspace.

If the light-like ray has a non-vanishing projection to E*, one must have P(t) = 0. The
solutions form a collection of 6-spheres labelled by the roots t,, of P(¢) = 0. 6-spheres are not
associative.

(b) RE(PE) = 0 corresponding to co-quaternionicity leads to P(t) = 0 always and gives a collec-
tion of 6-spheres.

2. Suppose now that P(t) is shifted to P;(t) = P(t) — ¢, ¢ a real number. Also now M# is obtained
as solutions to IM(P) = 0. For RE(P) = 0 one obtains two conditions P(¢t) = 0 and P(t — ¢) = 0.
The common roots define a subset of 6-spheres which for special values of ¢ is not empty.

The above discussion was limited to 6M§ and light-likeness of its points played a central role. What
about the interior of 8-D CD?

1. The natural expectation is that in the interior of CD one obtains a 4-D variety X*. For IM(P) =0
the outcome would be union of X* with M$ and the set of 6-spheres for IM(P) = 0. 4-D variety
would intersect M7} in a discrete set of points and the 6-spheres along 2-D varieties X2. The higher
the degree of P, the larger the number of 6-spheres and these 2-varieties.

2. For RE(P) = 0 X* would intersect the union of 6-spheres along 2-D varieties. What comes in mind
that these 2-varieties correspond in H to partonic 2-surfaces defining light-like 3-surfaces at which
the induced metric is degenerate.

3. One can consider also the situation in the complement of 8-D CD which corresponds to the com-
plement of 4-D CD. One expects that RE(P) = 0 condition is replaced with IM(P) = 0 condition
in the complement and RE(P) = IM(P) = 0 holds true at the boundary of 4-D CD.

6-spheres and 4-D empty light-cones are special solutions of the conditions and clearly analogs of
branes. Should one make the (reluctant-to-me) conclusion that they might be relevant for TGD at the
level of M8.

1. Could Mi (or CDs as 4-D objects) and 6-spheres integrate the space-time varieties inside different 4-
D CDs to single connected structure with space-time varieties glued to the 6-spheres along 2-surfaces
X? perhaps identifiable as pre-images of partonic 2-surfaces and maybe string world sheets? Could
the interactions between space-time varieties X} assignable with different CDs be describable by
regarding 6-spheres as bridges between X having only a discrete set of common points. Could one
say that X? interact via the 6-sphere somehow. Note however that 6-spheres are not dynamical.

2. One can also have Poincare transforms of 8-D CDs. Could the description of their interactions
involve 4-D intersections of corresponding 6-spheres?

3. 6-spheres in IM(P) = 0 case do not have image under M® — H correspondence. This does not seem
to be possible for RE(P) = 0 either: it is not possible to map the 2-D normal space to a unique
C P, point since there is 2-D continuum of quaternionic sub-spaces containing it.
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3.3 M?® — H duality: objections and challenges

In the following I try to recall all objections against the reduction of classical physics to octonionic
algebraic geometry and against the notion of M®— H duality and also invent some new counter arguments
and challenges.

3.3.1 Can on really assume distribution of M?(z)?

Hamilton-Jacobi structure means that M?(z) depends on position and M?(x) should define an integrable
distribution integrating to a 2-D surface. For cosmic string extremals this surface would be minimal
surface so that the term ”string world sheet” is appropriate. There are objections.

1. It seems that the coefficients of octonionic polynomials cannot contain information about string
world sheet, and the only possible choice seems to be that string world sheets and partonic 2-surfaces
parallel to it assigned with integrable distribution of orthogonal complements E?(z) should be coded
by quaternionic moduli. It should be possible to define quaternionic coordinates ¢; decomposing to
pairs of complex coordinates to each choice of M?(z)x E?(z) decomposition of given M. Octonionic
coordinates would be given by o = q1 + ¢q214 where ¢; are associated with the same quaternionic
moduli. The choice of Hamilton-Jacobi structure would not be ad hoc procedure anymore but part
of the definition of solutions of field equations at the level of M3.

2. It would be very nice if the quaternionic structure could be induced from a fixed structure defined
for ME once the choice of curvilinear M* coordinates is made. Since Hamiltoni-Jacobi structure [25]
involves a choice of generalized Kahler form for M* and since quaternionic structure means that
there is full S? of Kiihler structures determined by quaternionic imaginary units (ordinary Kéhler
form for sub-space E® C M$) the natural proposal is that Hamilton-Jacobi structures is determined
by a particular local choice of the Kihler form for M* involving fixing of quaternionic imaginary
unit fixing M?2(x) C M identifiable as point of S2. This might relate closely also to the fixing of
twistor structure, which indeed involves also self-dual Kahler form and a similar choice.

3. One can argue that it is not completely clear whether massless extremals (MEs) [25] allow a general
Hamilton-Jacobi structure. It is certainly true that if the light-like direction and orthogonal polar-
ization direction are constant, MEs exist. It is clear that if the form of field equations is preserved
and thus reduces to contractions of various tensors with second fundamental form one obtains only
contractions of light-like vector with itself or polarization vector and these contractions vanish. For
spatially varying directions one could argue that light-like direction codes for a direction of light-
like momentum and that problems with local conservation laws expressed by field equations might
emerge.

3.3.2 Can one assign to the tangent plane of X* c M® a unique CP, point when M? depends
on position

One should show that the choice s(z) € CP, for a given distribution of M?(z) C M*(z) is unique in
order to realize the M® — H correspondence as a map M® — H. It would be even better if one had an
analytic formula for s(z) using tangent space-data for X4 C H.

1. If M?(z) = Mg holds true but the tangent space M*(x) depends on position, the assignment of C'P;
point s(x) to the tangent space of X* C M?® is trivial. When M*(z) is not constant, the situation
is not so easy.

2. The space M?(z) C M*(z) satisfies also the constraint M?(z) C Mg since quaternionic moduli are
fixed. To avoid confusion notice that M?(z) denotes tangent space of X* and is different from Mg
fixing the quaternionic moduli.
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3. M?(x) determines the local complex subspace and its completion to quaternionic tangent space
M*(z) determines a point s(z) of CP,. The idea is that Mg defines a standard reference and that
one should be able to map M?(x) to Mg by G automorphism mapping also the s(x) to a unique
point so(x) € CP, defining the C'P, point assignable to the point of X4 c M8.

4. One can assign to the point 2 quaternionic unit vector n(z) determining M?(z) as the direction of
the preferred imaginary unit. The G transformation must rotate n(z) to ng defining M2 and acts
on s. G5 transformation is not unique since u; gus has the same effect for u; C U(2) leaving invariant
the point of C'P, for initial and final situation. Hence the equivalence classes of transformations
should correspond to a point of 6-dimensional double coset space U(2)\G2/U(2). Intuitively it
seems obvious that the so(z) is unique but proof is required.

3.3.3 What about the inverse of M® — H duality?

M?® — H duality should have inverse in the critical regions of X* C M?®, where associativity conditions
are satisfied. How could one construct the inverse of M® — H duality in these regions? One should map
space-time points (m,s) € M* x CP, to points (m,e) = (m, f(m,s)) € M®. M D Mg parameterized
by C'P» point can be chosen arbitrarily and one can require that it corresponds to some space-time point
(mo,s0) € H. CPy point s(x) characterizes the quaternionic tangent space containing M?(z) and can
choose Mg to be M?(xg) for conveniently chosen zg. Coordinates z can be used also for X* c M¥.

One obtains set of points (m,e) = (m(x), f(m(z),s(z)) € M® and a distribution of 4-D spaces
of labelled by s(x). This requires that the 4-D tangent space spanned by the gradients of m(z) and
f(m(z),s(x)) and characterized by s; C CPs for given M?(z) by using the above procedure mapping
the situation to that for Mg is same as the tangent space determined by s(z): s(z) = s1(x). Also the
associativity conditions should hold true. One should have a formula for s; as function of tangent vectors
of space-time surface in M®. The ansatz based on algebraic geometry in M8 should be equivalent with
this ansatz. The problem is that the ansatz leads to algebraic functions which cannot be found explicitly.
It might be that in practice the correspondence is easy only in the direction M® — H.

3.3.4 What one can say about twistor lift of M® and M?® — H duality?

One can argue that the twistor spaces C'P; associated with M* and E* are in no way visible in the
dynamics of octonion polynomials and in M® — H duality. Hence one could argue that they are not
needed for any reasonable purpose. I cannot decide whether this is indeed the case. There I will consider
the existence of twistor lift of the M?® and also the twistor lift M® — H duality in the space-time regions,
where the tangent spaces satisfy the conditions for the existence of the duality as a map (m,e) € M8 —
(m, s) € M* x CP, must be considered. This involves some non-trivial delicacies.

1. The twistor bundles of M? and E% would be simply M2* x CP; and Ef x CP;. CP, = S? param-
eterizes direction vectors in 3-D Euclidian space having interpretation as unit quaternions so that
this interpretation might make sense. The definition of twistor structure means a selection of a
preferred quaternion unit and its representation as Kéhler form so that these twistor bundles would
have thus Kéhler structure. Twistor lift replaces complex quaternionic surfaces with their twistor
spaces with induced twistor structure.

2. In M?® the radii of the spheres C'P; associated with M* and E* would be most naturally identical
whereas in M* x CP, they can be different since C'P, is moduli space. Is the value of the CP;
radius visible at all in the classical dynamics in the critical associative/co-associative space-time
regions, where one has minimal surfaces. Criticality would suggest that besides coupling constants
also parameters with dimension of length should disappear from the field equations. At least for the
known extremals such as massless extremals, C'P; type extremals, and cosmic strings C' P, radius
plays no role in the equations. CP, radius comes however into play only in interaction regions
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defined by CDs since M® — H duality works only at the 3-D ends of space-time surface and at the
partonic orbits. Therefore the different radii for the C'P; associated with CP, and E* cause no
obvious problems.

Consider now the idea about twistor space as real part of octonionic twistor space regarded as

quaternion-complex space. One can regard

4

1. One can regard CP; = S? as the space of unit quaternions and it is natural to replace it with

the 6-sphere S% of octonionic imaginary units at the level of complexified octonions. The sphere
of complexified (by ) unit octonions is non-compact space since the norm is complex valued and
this generalization looks neither attractive nor necessary since the projection to real numbers would
eliminate the complex part.

The equations determining the twistor bundle of space-time surface can be indeed formulated as
vanishing of the quaternionic imaginary part of S® coordinates, and one obtains a reduction to
quaternionic sphere S? at space-time level.

If S? is identified as sub-manifold S C S°, it can be chosen in very many manners (this is of
course not necessary). The choices are parameterized by SO(7)/SO(3) x SO(4) having dimension
D = 12. This choice has no physical content visible at the level of H. Note that the K&hler structure
determining Hamilton-Jaboci structure is fixed by the choice of preferred direction (M?(x)). If all
these moduli are allowed, it seems that one has something resembling multiverse, the description
at the level of M?® is deeper one and one must ask whether the space-time surfaces with different
twistorial, octonionic, and quaternionic moduli can interact.

. The resulting octonionic analog of twistor space should be mapped by M® — H corresponds to

twistor space of space-time surface T(M*) x T(CP,). The radii of twistor spheres of T'(M*) and
T(CP,) are different and this should be also understood. It would seem that the radius of T(M*)
at H = M* x C'P, side should correspond to that of T'(M%) at M8 side and thus to that of S6 as
its geodesic sphere: Planck length is the natural proposal inspired by the physical interpretation
of the twistor lift. The radius of T(C'P;) twistor sphere should correspond to that of CP; and is
about 2'2 Planck lengths.

Therefore the scale of C'P, would emerge as a scale of moduli space and does not seem to be
present at the level of M?® as a separate scale. M? level would correspond to what might be called
Planckian realm analogous to that associated with strings before dynamical compactification which
is now replaced with number theoretic compactification. The key question is what determines the
ratio of the radii of C' P, scale to Planck for which favored value is 212 [27]. Could quantum criticality
determine this ratio?

2

Appendix: o° as a simple test case

Octonionic polynomial 0? serves as a simple testing case. o? is not irreducible so that its properties might
not be generic and it might be better to study polynomial of form P(0) = o + po? instead.

Before continuing, some conventions are needed.

1. The convention is that in M® = M'x E” E7 corresponds to purely imaginary complexified octonions

in both octonionic sense and in the sense that they are proportional to i. M corresponds to
octonions real in both senses. This corresponds to the signature (1,—1,—1,—1,...) for M® metric
obtained as restriction of complexified metric. For M4 = M x E? analogous conventions hold true.

. Conjugation 0 = o9 4+ oply — 0 = 09 — [0 does not change the sign of . Quaternions can be

decomposed to real and imaginary parts and some notation is needed. The notation ¢ = Re(q) +
Im(q) seems to be the least clumsy one: here I'm(q) is 3-vector.
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The explicit expression in terms of quaternionic decomposition o = ¢; + ¢o14 reads as

P(0) = 0® = ¢} — q2G + (192 + ¢2G1) s - (4.1)

o corresponds to complexified octonion and there are two options concerning the interpretation of M*
and E* M* could correspond to quaternionic or co-quaternionic sub-space. I have assumed the first
interpretation hitherto but actually the identification is not obvious. This two cases are different and
must be treated both.

With these notations quaternionic inner product reads as

7192 = Re(q192) + Im(q192)
Re(q1g2) = Re(q1)Re(qz) — Im(q1) - Im(qe) , (4.2)
Im(q1q2) = Re(q1)Im(q2) + Re(qz)Im(q1) + Im(q1) x Im(q2) -

Here a - b denotes the inner product of 3-vectors and a x b their cross product.

Note that one has real and imaginary parts of octonions as two quaternions and real and imaginary
parts of quaternions. To avoid confusion, I will use RE and I M to denote the decomposition of octonions
to quaterions and Re and Im for the decomposition of quaternions to real and imaginary parts.

One can express the RE(0?) as

RE(O )EX =q q2q2 R
Re(X) = Re(q )2 m(q1) - Im(q2) — (Re(q2)? + Im(g2) - Im(g2))
Im(X) = Im(q7) = Re(ql)fm(ql) :
(4.3)
For 1M (0?) one has
IM(0*) =Y = qg2 + @24
Re(Y) = 2Re(q1) Re(q2) ,
m(Y) = Re(q1)Im(q2) — Re(g2)Im(q1) + Im(q1) x Im(q2) .
(4.4)

The essential point is that only RE(0?) contains the complexified Euclidian norm g2z which becomes

Minkowskian of Euclidian norm depending on whether one identifies M* as associative or co-associative

surface in o®.

4.1 Option I: M* is quaternionic

Consider first the condition RE(0?) = 0. The condition decomposes to two conditions stating the van-
ishing of quaternionic real and imaginary parts:

Re(X) = R@(Q1)2 —Im(q1) - Im(q2) — (RG(QQ)Z +Im(qe) - Im(q2)) = Nasa(q1) — Npa(gz2) =0

Im(X) = Im(g?) = 2Re(q)Im(q:) = 0 .
(4.5)

Im(X) = 0 is satisfied for Re(q1) = 0 or Im(q;) = 0 so that one has two options. This gives 1-D line
in time direction of 3-D hyperplane as a solution for M* factor.
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Re(X) = 0 states Npa(q1) = Nga(g2). g2 coordinate itself is free. Nga(gz) is negative so that g; must
be space-like with respect to the N4 so that only the solution Re(g;) = 0 is possible. Therefore one has
Re(g1) = 0 and Nppa(q1) = Npa(qz).-

One can assign to each E* point a section of hyperboloid with ¢ = 0 hyper-plane giving a sphere
and the surface is 6-dimensional sphere bundle like variety! This is completely unexpected result and
presumably is due to the additional accidental symmetries due to the octonionicity. Also the fact that o?
is not irreducible polynomial is a probably reason since for o the surface is 4-D. The addition of linear
term is expected to remove the degeneracy.

Consider next the case IM(0?) = 0. The conditions read now as

Re(Y) = 2Re(q1)Re(q2) =0 W)
4.6
Im(Y) = Re(q1)Im(q2) — Re(q2)Im(q1) + Im(q1) x Im(q2) =0 .

Since cross product is orthogonal to the the factors Im(Y") = 0 condition requires that I'm(g;) and Im(qgz)
are parallel vectors: Im(q;) = Mm(q2) and one has the condition Re(q;) = ARe(g2) implying g1 = Ago.
Therefore to each point of E* is associated a line of M*. The surface is 5-dimensional.

It is interesting to look what the situation is if both conditions are true so that one would have a
singularity. In this case Re(q1) = 0 and Re(q1) = ARe(g2) imply A = 0 so that g; = 0 is obtained and
the solution reduces to 4-D E*, which would be co-associative.

4.2 Option II: M* is co-quaternionic

This case is obtained by the inspection of the previous calculation by looking what changes the identifi-
cation of M* as co-quaternionic factor means. Now ¢; is Euclidian and ¢» Minkowskian coordinate and
q2q- gives Minkowskian rather than Euclidian norm.

Consider first RE(0?) = 0 case.

Re(X) = Re(q1)? — Im(q1) - Im(q2) — (Re(q2)* + Im(qz) - Im(g2)) = Naga(q1) — Nya(g2) =0

Im(X) = Im(q?) = 2Re(q1)Im(q1) =0 .
(4.7)

Na(q1) — Nara(gz2) = 0 condition holds true now besides the condition Re(q1) = 0 or I'm(q1) = 0 so that
one has also now two options.

1. For Re(q1) = 0 Nysa(q1) is non-positive and this must be the case for Nys4(g2)) so that the exterior
of the light-cone is selected. In this case the points of M* with fixed Ny give rise to a 2-D
intersection with Re(q;) = 0 hyper-plane that is sphere so that one has 6-D surface, kind of sphere
bundle.

2. For Im(q;) = 0 Minkowski norm is positive and so must be corresponding norm in E4 so that in E4
surface has future ligt-cone as projection. This surface is 4-D. The emergence of future light-cone
might provide justification for the emergence of CDs and zero energy ontology.

For I M (0?) the discussion is same as in quaternionic case since norm does not appear in the equations.

At singularity both RE(0?) and IM (0?) = 0 vanish. The condition ¢; = Aga reduces to A = 0 so that
q1 = 0 is only allowed. This leaves only light-cone boundary under consideration.

The appearance of surfaces with dimension higher than 4 raises the question whether something is
wrong. One could of course argue that associativity allows also lower than 4-D surfaces as associative
surfaces and higher than 4-D surfaces as co-associative surfaces. At H-level one can say that one has 4-D
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surfaces. A good guess is that this behavior disappears when the linear term is absent and origin ceases
to be a singularity.

Received August 11, 2017; Revised August 15, 17 & 29; Accepted August 31, 2017
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