On the Amdeberhan's Combinatorial Identity

J. López-Bonilla*, C. G. León-Vega \& S. Vidal-Beltrán
ESIME-Zacatenco, Instituto Politécnico Nacional, México

Abstract

We present an elementary proof of a combinatorial identity obtained by Amdeberhan via the Zeilberger's algorithm.

Keywords: Cancellation identity, combinatorial identities.

1. Introduction

Amdeberhan [1] employed the Zeilberger's algorithm [2,3] to deduce the combinatorial identity:

$$
\begin{equation*}
A \equiv \sum_{j=0}^{k+1} \frac{(-1)^{j+1}}{n-j}\binom{k}{j-1}\binom{j}{r}=\frac{(-1)^{k}}{n-1} \frac{\binom{n}{r}}{\binom{n-2}{k}}, \quad 0 \leq r \leq k, \quad n \geq k+2 ; \tag{1}
\end{equation*}
$$

here we exhibit an elementary proof of (1) without the application of the mentioned algorithm.

2. Amdeberhan's identity

First we observe that $\binom{k}{j-1}=\frac{j}{k+1}\binom{k+1}{j}$, then:

$$
\begin{gather*}
A=\frac{1}{k+1} \sum_{j=0}^{k+1}(-1)^{j} \frac{n-j-n}{n-j}\binom{k+1}{j}\binom{j}{r}= \\
\frac{1}{k+1}\left[\sum_{j=0}^{k+1}(-1)^{j}\binom{k+1}{j}\binom{j}{r}-n \sum_{j=0}^{k+1} \frac{(-1)^{j}}{n-j}\binom{k+1}{j}\binom{j}{r}\right] \tag{2}
\end{gather*}
$$

but in $[4,5]$ we find the relation:

$$
\begin{equation*}
\sum_{j=0}^{p}(-1)^{j}\binom{p}{j}\binom{j}{r}=0, \quad r<p \tag{3}
\end{equation*}
$$

[^0]which can be applied to (2) because $r<k+1$, thus:
\[

$$
\begin{equation*}
A=-\frac{n}{k+1}\binom{k+1}{r} \sum_{j=r}^{k+1}(-1)^{j}\binom{k+1-r}{j-r} \frac{1}{n-j}, \tag{4}
\end{equation*}
$$

\]

where was used the cancellation identity $\binom{k+1}{j}\binom{j}{r}=\binom{k+1}{r}\binom{k+1-r}{j-r}$ [5]. Hence from (4):

$$
\begin{equation*}
A=-\frac{(-1)^{r} n}{k+1}\binom{k+1}{r} \sum_{q=0}^{m}\binom{m}{q} \frac{(-1)^{q}}{N-q}, \quad N=n-r, \quad m=k+1-r, \tag{5}
\end{equation*}
$$

but we have the identity [4, 5]:

$$
\begin{equation*}
\sum_{q=0}^{m}(-1)^{q}\binom{m}{q} \frac{1}{N-q}=\frac{(-1)^{m}}{N\binom{N-1}{m}}, \quad N \geq m+1 \tag{6}
\end{equation*}
$$

which is applicable in (5) because $N \geq m+1$ means $n \geq k+2$, therefore:

$$
A=\frac{(-1)^{k} n}{(n-r)(k+1)} \frac{\binom{k+1}{r}}{\binom{n-r-1}{k+1-r}}=\text { eq. (1), q.e.d. }
$$

Received August 14, 2017; Accepted September 24, 2017

References

1. T. Amdeberhan, A note on a question due to A. Garsia, in 'Gems in Experimental Mathematics', Eds.
L. A. Medina, T. Amdeberhan, V. H. Moll; Am. Math. Soc. USA (2010) 19-24
2. D. Zeilberger, A fast algorithm for proving terminating hypergeometric identities, Discrete Math. 80, No. 2 (1990) 207-211
3. M. Petkovsek, H. S. Wilf, D. Zeilberger, $A=B$, symbolic summation algorithms, A. K. Peters, Wellesley, MA (1996)
4. J. Riordan, Combinatorial identities, John Wiley \& Sons, New York (1968)
5. J. Quaintance, H. W. Gould, Combinatorial identities for Stirling numbers, World Scientific, Singapore (2016)

[^0]: * Correspondence: J. López-Bonilla, ESIME-Zacatenco-IPN, Edif. 5, Col. Lindavista CP 07738, CDMX, México E-mail: jlopezb@ipn.mx

