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Abstract 
In this paper, we obtain the mean curvature of an A-net surface in the three-dimensional 

Heisenberg group 3H . Moreover, we give some characterizations of this surface according to 

Levi-Civita connections of three dimensional Heisenberg group 3H . Finally, we give an example 

and draw the minimal A-net surface with the help of Mathematica. 
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1.  Introduction 
 

The study of mean curvature extends back to the 18
th
 century. Later, Lagrange looked for a 

necessary condition for minimizing a certain integral and found the minimal surface equation. 

Meusnier first defined the term of mean curvature. Important mathematicians such as Gauss and 

Weierstrass devoted much of their studies to these surfaces. Minimal  surfaces have interesting 

applications in physics such as soap films, hydrodynamic wakes, thermodynamics, fractals, etc. 

 

In this paper, we investigated the minimal surface problem in the three-dimensional Heisenberg 

group, which is equipped with its standard Carnot-Carathéodory metric. Using a particular 

surface measure, the characterizations of minimal surfaces in terms of a sub-elliptic partial 

differential equation and proof of an existence result for the Plateau problem in this setting are 

made in [13]. Equations for the Gaussian Curvature and for the Laplacian of a minimal surface in 

the Heisenberg Group 
3H  is established in [12]. Next we studied the Gauss map of minimal 

surfaces in the Heisenberg group Graphic endowed with a left-invariant Riemannian metric and 

found that the Gauss map of a nowhere vertical minimal surface is harmonic onto the hyperbolic 

plane 
2H . On the contrary, any nowhere antiholomorphic harmonic map onto 

2H  is the Gauss 

map of a nowhere vertical minimal surface in [4]. Some half-space theorems are proven in the 

Heisenberg and Lie groups that are endowed with their standard left-invariant Riemannian 

metrics in [5]. 

 

The Bonnet problem of determining surfaces in Euclidean three-dimensional space that can 

allow for at least one nontrivial isometry that preserves principal curvatures is studied in 
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Soyuçok, 1995. This problem is considered locally and examined the general case. Later, Bonnet 

ruled surfaces that admit only one nontrivial isometry that preserve principal curvatures and 

surfaces whose generators and orthogonal trajectories form a special net called an A-net 

considered in [8].  

 

In this paper, we studied A-net minimal surfaces in the three-dimensional Heisenberg group. We 

then give some characterizations of this surface according to Levi-Civita connections of 3H . 

 

 

2.  Heisenberg Group 3H  

 

The Heisenberg group historically originates in and still has its strongest ties to quantum physics: 

there it is a group of unitary operators acting on the space of states induced from those 

observables on a linear phase space, which are given by linear or by constant functions. So any 

Heisenberg group is a subgroup of a group of observables in certain simple examples of quantum 

mechanical systems. 

 

The Heisenberg group 3H  is defined as 
3R  with the group operation 

 

       .
2
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The left-invariant Riemannain metric on 3H  is given by 

 

   .==
2222 dzxdydydxdsg   

 

The left invariant orthonormal frame on 3H , which is belong to Riemannian metric g   
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For the covariant derivatives of the Levi-Civita connection of the left-invariant metric g , 
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where the ),( ji -element in the table above equals j
i
ee  for our basis. Also, we have the 

Heisenberg bracket relations 

       0.==,= 3231321 e,ee,eee,e  
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3.  A-net Surfaces with Constant Gaussian in 3H  

 

In this chapter, we characterized A-net surfaces in the three-dimensional Heisenberg group. Next 

we obtain the constant Gaussian curvature of this surface. An A-net on a surface such that, when 

this net is parametrized and the conditions 

 

 0.=0,.=0,=,= 2112  constanthconstanthFGE  

 

are satisfied, it is called an A-net where ,E  ,F  G  are the coefficients of the first fundamental 

form of the surface and ,11h  ,12h  ,21h  22h  are the coefficients of the second fundamental form. 

 

Let  

         321 ,=, eee yxyxyx    

 (3.1) 

be a surface in  .,3 gH  If we take derivatives of the surface, which is given with the 

parametrization (3.1), we have 

 

       ,,=, 31 ee yxxyx x

'

x    (3.2) 

       .,=, 32 ee yxyyx y

'

y    

 

Then, components of the first fundamental form of the surface are 

 

  ,= 22 xE '

x    

 ,= yxF   (3.3) 

   .= 22

y

' yG    

 

So, if 0,=F  from equations (3.3) we have 

 

 0=y  or 0.=x  (3.4) 

 

From (3.4), if 0=y , then    .=, xyx   If 0,=x  then    .=, yyx   

 

Theorem 3.1. Let  yx,  be a surface that is parameterized as (3.1). If 0,=y  then the mean 

curvature of the surface  yx,  
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Proof. From equations (3.2), we have 

     ,= 311 eeE xx ''    
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   .= 22 eE y'  

 

Then, components of the first fundamental form of the surface  yx,  are 

 

    ,= 22 xxE ''    

 0,=F  (3.6) 

  .= 2 yG '  

 

So, the induced metric is 

 

        .=~ 2222 dyydxxxg '''    

 

The unit normal vector field of the surface is 
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Then, we have 

 

         )(= 3211
1
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     22
2

= eEE yy '''   (3.11) 

 

So, from (3.7) and (3.8)- (3.11) equations, components of the second fundamental form of the 

surface are 
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=
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 0.=22h  (3.15) 
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Then, the mean curvature of the surface  yx,  
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Theorem 3.2. Let  yx,  be a surface that is parameterized as (3.1). If  yx,  is an A-net 

surface with 0,=y  then  yx,  is minimal 
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Proof. From (3.13), (3.14), we have 

 

 Aconstanth ==12  
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and 

 

 Bconstanth ==21  

       .=
2

1 22 Bxxy '''    (3.19) 

 

From (3.18), (3.19), we have 

 

     ,
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where 
B

A
C =  and 1c  constant of integration .  Then, the mean curvature is 

 

 0.=H  (3.21) 

 

So, if  yx,  is a minimal A-net surface, we have  
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So, the proof is complete. 

 

Corollary 3.3. Let  yx,  be A-net surface that is parameterized as (3.1) with 0.=y  Then, the 

Gaussian curvature of the  yx,  is a non-zero constant. 
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Proof. From equations (3.6), (3.12)-(3.15), the Gaussian curvature is 
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If 0,=C  then we have 0,=12h  which is conrtadicts with the surface is a A-net surface. 

 

Theorem 3.4. Let  yx,  be a surface that is parameterized as (3.1). If 0,=x  then the mean 

curvature of the surface  yx,  
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 Proof. The proof obtains like theorem 3.2. 

 

Corollary 3.5. Let  yx,  be a surface that is parameterized as (3.1). If  yx,  is an A-net 

minimal surface with 0,=x  then  
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Example 3.6. Let  yx,  be a surface in  g,3H  that is parameterized as 

 

   ).cos,sin,cos3(=, xyxyx  

 

This surface is a A-net minimal surface in  g,3H . 
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  g,in  surface minimalnet A Figure1. 3H  
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