On Exponential Operators

J. Morales ${ }^{1}$, A. Iturri-Hinojosa ${ }^{2}$ \& J. López-Bonilla ${ }^{* 2}$
${ }^{1}$ CBI-Área de Física Atómica Molecular Aplicada, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas CP02200, CDMX, México
${ }^{2}$ ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 5, 1er. Piso, Lindavista 07738, CDMX, México

Abstract

We study $e^{\xi(A+B)}$ under several conditions between A and B with their commutator, which leads to the factorizations of Fujiwara, Beauregard and García-Arévalo.

Keywords: Exponential operators, Fujiwara-Beauregard formulae.

1. Introduction

It is very known the relation [1]:

$$
\begin{equation*}
e^{\xi(A+B)}=e^{\xi A} e^{\xi B} e^{-\frac{\xi^{2}}{2}[A, B]} \tag{1}
\end{equation*}
$$

where ξ is an arbitrary parameter, and the operators A and B commute with their commutator:

$$
\begin{equation*}
[A,[A, B]=0, \quad[B,[A, B]]=0 . \tag{2}
\end{equation*}
$$

Then it is natural to search expressions for $e^{\xi(A+B)}$ under several conditions, for example:

$$
\begin{equation*}
[A,[A, B]]=2 \gamma A, \quad[B,[A, B]]=-2 \gamma B \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
[A,[A, B]]=0, \quad[B,[A, B]]=k . \tag{4}
\end{equation*}
$$

The case (3) is analyzed in [2-5], and the option (4) is considered in [2, 6]; in Sec. 2 we study the results of these papers, and Sec. 3 contains applications of these results.

[^0]
2. Exponential operators

From (1) with the conditions (2):

$$
e^{\xi A} e^{\xi B} e^{-\frac{\xi^{2}}{2}[A, B]}=e^{\xi(A+B)}=e^{\xi B} e^{\xi A} e^{\frac{\xi^{2}}{2}[A, B]}
$$

therefore:

$$
\begin{equation*}
e^{\xi A} e^{\xi B}=e^{\xi B} e^{\xi A} e^{\xi^{2}[A, B]} \tag{5}
\end{equation*}
$$

Besides:

$$
e^{\xi(A+B)}=e^{\xi A} e^{\frac{\xi}{2} B} e^{\frac{\xi}{2} B} e^{-\frac{\xi^{2}}{2}[A, B]}=e^{\frac{\xi}{2} B} e^{\xi A} e^{\frac{\xi^{2}}{2}[A, B]} e^{-\frac{\xi^{2}}{2}[A, B]} e^{\frac{\xi}{2} B}
$$

hence:

$$
\begin{equation*}
e^{\xi(A+B)}=e^{\frac{\xi}{2} B} e^{\xi A} e^{\frac{\xi}{2} B}, \tag{6}
\end{equation*}
$$

under the constraints (2).

On the other hand, García-Arévalo [4] employ (3) and parameter differentiation [7, 8] to deduce the factorization:

$$
\begin{equation*}
e^{\xi(A+B)}=\exp \left[\frac{1}{\sqrt{\gamma}} \tan \left(\frac{\xi}{2} \sqrt{\gamma}\right) B\right] \exp \left[\frac{1}{\sqrt{\gamma}} \sin (\xi \sqrt{\gamma}) A\right] \exp \left[\frac{1}{\sqrt{\gamma}} \tan \left(\frac{\xi}{2} \sqrt{\gamma}\right) B\right] . \tag{7}
\end{equation*}
$$

For the case $\gamma \rightarrow 0$ the expressions (3) and (7) reproduce (2) and (6). If $\xi=2 \lambda$ and $\gamma=1$, then (7) gives the Fujiwara [2]-Beauregard [3] formula [5]:

$$
\begin{equation*}
e^{2 \lambda(A+B)}=e^{B \tan \lambda} e^{A \sin (2 \lambda)} e^{B \tan \lambda} \tag{8}
\end{equation*}
$$

For the conditions (4) we have the García-Arévalo [6] relation:

$$
\begin{equation*}
e^{\xi(A+B)}=e^{\frac{\xi^{3}}{3} k} e^{\xi A} e^{\xi B} e^{-\frac{\xi^{2}}{2}[A, B]}, \tag{9}
\end{equation*}
$$

and we recover (1) and (2) when $k=0$; the factorization (9) can be written in the form:

$$
\begin{equation*}
e^{\xi(A+B)}=e^{-\frac{\xi^{3}}{6} k} e^{-\frac{\xi^{2}}{2}[A, B]} e^{\xi A} e^{\xi B} \tag{10}
\end{equation*}
$$

With the procedure indicated in [5] is possible to obtain the following expression:

$$
\begin{equation*}
e^{\xi(A+B)}=e^{-\frac{\xi^{3}}{24} k} e^{\frac{\xi}{2} B} e^{\xi A} e^{\frac{\xi}{2} B} \tag{11}
\end{equation*}
$$

as an alternative to (9); if $k=0$ then (11) implies (6).

3. Special cases

Now we shall realize some applications of the results exhibited at Sec. 2:
a). $\xi=u, \quad A=\omega \frac{d^{2}}{d x^{2}}, \quad B=\frac{x^{2}}{\omega}$, then:

$$
[A, B]=2\left(1+2 x \frac{d}{d x}\right), \quad[A,[A, B]]=8 A, \quad[B,[A, B]]=-8 B
$$

in according with (3) for $\gamma=4$, hence (7) implies the following expression of Fujiwara [2]Beauregard [3]:

$$
\begin{equation*}
e^{u\left(\omega \frac{d^{2}}{d x^{2}}+\frac{x^{2}}{\omega}\right)}=e^{\frac{x^{2}}{2 \omega} \tan u} e^{\frac{\omega}{2} \sin (2 u) \frac{d^{2}}{d x^{2}}} e^{\frac{x^{2}}{2 \omega} \tan u}, \tag{12}
\end{equation*}
$$

which is useful to determine the time evolution operator for a one-dimensional harmonic oscillator.
b). $A=a x^{2}, B=\frac{d}{d x}$, thus:

$$
[A, B]=-2 a x, \quad[A,[A, B]]=0, \quad[B,[A, B]]=-2 a=k
$$

verifying (4), then from (10):

$$
\begin{equation*}
e^{\xi\left(a x^{2}+\frac{d}{d x}\right)}=e^{a \xi\left(x^{2}+\xi x+\frac{\xi^{2}}{3}\right)} e^{\xi \frac{d}{d x}} \tag{13}
\end{equation*}
$$

c). $\quad \xi=u, \quad A=\frac{d^{2}}{d x^{2}}, \quad B=2 \omega x$, therefore:

$$
[A, B]=4 \omega \frac{d}{d x}, \quad[A,[A, B]]=0, \quad[b,[a, b]]=-8 \omega^{2}=k
$$

in according with (4), hence (11) implies the relation of Fujiwara [2]:

$$
\begin{equation*}
e^{u\left(\frac{d^{2}}{d x^{2}}+2 \omega x\right)}=e^{\frac{u^{3}}{3} \omega^{2}} e^{u \omega x} e^{u \frac{d^{2}}{d x^{2}}} e^{u \omega x} . \tag{14}
\end{equation*}
$$

We consider that is important to study the splitting of $e^{\xi(A+B)}$ for several conditions between A and B with their commutator.

References

1. E. Merzbacher, Quantum mechanics, John Wiley \& Sons, New York (1970) Chap. 8.
2. I. Fujiwara, On the space-time formulation of non-relativistic quantum mechanics, Prog. Theor. Phys. 21, No. 6 (1959) 902-918.
3. L. Beauregard, Time evolution operator for the harmonic oscillator, Am. J. Phys. 33, No. 12 (1965) 1084.
4. P. C. García-Quijas, L. M. Arévalo-Aguilar, Overcoming misconceptions in quantum mechanics with the time evolution operator, Eur. J. Phys. 28 (2007) 147-159.
5. R. Cruz-Santiago, J. López-Bonilla, J. Morales, G. Ovando, On the operator $\exp [2 \lambda(P+Q)]$, The SciTech, J. of Sci. \& Tech. 2, No. 1 (2013) 16-20.
6. P. C. García-Quijas, L. M. Arévalo-Aguilar, Factorizing the time evolution operator, Phys. Scr. 75, No. 2 (2007) 185-194.
7. R. M. Wilcox, Exponential operator and parameter differentiation in quantum physics, J. Math. Phys. 8, No. 4 (1967) 962-982.
8. M. Lutzky, Parameter differentiation of exponential operators and the Baker-Campbell-Hausdorff formula, J. Math. Phys. 9, No. 7 (1968) 1125-1128.

[^0]: * Correspondence: J. López-Bonilla, ESIME-Zacatenco-IPN, Edif. 5, Col. Lindavista CP 07738, CDMX, México E-mail: jlopezb@ipn.mx

