Article

On the Geometry of Surfaces in Spatial Motions
 Mustafa Yeneroğlu ${ }^{17}$ \& Vedat Asili

Firat University, Department of Mathematics, 23119, Elazı̆̆, Turkey

Abstract

In this study, the rotation motion of a body and its properties is given. Gauss curvature of quadratic surface obtained by this rotation motion is examined.

Keywords: Geometry, surface, spatial motion, rotation motion, Gauss curvature, quadratic surface.

I. INTRODUCTION

The rotation of a three dimensional body M , with respect to a fixed body, F is represented by the transformation equation

$$
\begin{equation*}
X=A Y \tag{1.1}
\end{equation*}
$$

where X and Y are column matrix which are composed of composite vectors \boldsymbol{x} and \boldsymbol{y} respectively. A is an orthogonal matrix . Rotations are orthogonal matrices with determinant equal to 1.

Characteristic polynomial of A is

$$
(\lambda-1)\left(\lambda^{2}-\lambda\left(a_{11}+a_{22}+a_{33}-1\right)+1\right)=0
$$

This equation is a reel root $\lambda=1$. Let b be the eigenvector of A associated with $\lambda=1$, all points on the line $l=t \boldsymbol{b}$ direction \boldsymbol{b} are fixed during the rotation. This is the axis of rotation of the body [5].

The requirement that a rotation maintain a constant distance between points of the body, thus can be written in the form

$$
\begin{equation*}
(X+Y)^{T}(X+Y)=0 \tag{1.2}
\end{equation*}
$$

This expresses the fact that diagonals $\boldsymbol{x}-\boldsymbol{y}$ and $\boldsymbol{x}+\boldsymbol{y}$ rhombus with edges \boldsymbol{x} and \boldsymbol{y} intersect at right angles. Now, since $X+Y=(A+I) Y$ and $X-Y=(A-I) Y$, we can compute

$$
\begin{equation*}
X-Y=(A-I)(A+I)^{-1}(X+Y) \tag{1.3}
\end{equation*}
$$

From here is

$$
\begin{equation*}
B=(A-I)(A+I)^{-1} \tag{1.4}
\end{equation*}
$$

where matrix B is called Cayley's Formula. This the matrix B has the property that $B=$ $-B^{T}$ which is termed skew-symmetry, that is

$$
B=\left[\begin{array}{ccc}
0 & -b_{3} & b_{2} \\
b_{3} & 0 & -b_{1} \\
-b_{2} & b_{1} & 0
\end{array}\right]
$$

[^0]Those elements can be assemled into the $b=\left(b_{1}, b_{2}, b_{3}\right)$ [8].
Given an orthogonal matrix A, we have from (1.3) a skew-symmetric matrix B and the relation

$$
\begin{equation*}
X-Y=B(X+Y) \tag{1.5}
\end{equation*}
$$

between the fixed and moving frame coordinates of points in a rotated body. We can write this equation in the form

$$
\begin{equation*}
\boldsymbol{x}-\boldsymbol{y}=\boldsymbol{b} \wedge(\boldsymbol{x}+\boldsymbol{y}) \tag{1.6}
\end{equation*}
$$

Equation (1.6) is called Rodrigues' Equation for rotations, \vec{b} is known as Rodrigues' Vector and norm \vec{b} is

$$
\begin{equation*}
\|\boldsymbol{b}\|=\tan \frac{\phi}{2} \tag{1.7}
\end{equation*}
$$

Let $\vec{s}=\left(s_{x}, s_{y}, s_{z}\right)$ be the unit vector which is direction vector \vec{b}. Thus is

$$
\begin{equation*}
b_{1}=\tan \frac{\phi}{2} s_{x}, b_{2}=\tan \frac{\phi}{2} s_{y}, b_{3}=\tan \frac{\phi}{2} s_{z} \tag{1.8}
\end{equation*}
$$

Cayley's Formula for the orthogonal matrix A can be written in terms of the rotation angle ϕ and the unit vector \vec{s} by nothing that $B=\tan \frac{\phi}{2} S$. The result is

$$
\begin{equation*}
A=\left(\cos \frac{\phi}{2} I-\sin \frac{\phi}{2} S\right)^{-1}\left(\cos \frac{\phi}{2} I+\sin \frac{\phi}{2} S\right) \tag{1.9}
\end{equation*}
$$

The constants in $C=\left(\cos \frac{\phi}{2} I+\sin \frac{\phi}{2} S\right)$ are Euler parameters of A. $\left(\cos \frac{\phi}{2} I-\sin \frac{\phi}{2} S\right)^{-1}$ compute the inverse and multiply by C to obtain the expression

$$
\begin{equation*}
A=I+\sin \phi S+(1-\cos \phi) S^{2} \tag{1.10}
\end{equation*}
$$

where S is a skew-symmetric matrix [8].

II.QUADRATIC SURFACES AND THEIR CURVATURES

From expressions (1.5) and (1.6) are obtained as follows,

$$
\begin{align*}
x_{1}-y_{1} & =-\left(x_{2}+y_{2}\right) b_{3}+\left(x_{3}+y_{3}\right) b_{2} 2.1 \tag{0.1}\\
x_{2}-y_{2} & =\left(x_{1}+y_{1}\right) b_{3}-\left(x_{3}+y_{3}\right) b_{1} \\
x_{3}-y_{3} & =-\left(x_{1}+y_{1}\right) b_{2}+\left(x_{2}+y_{2}\right) b_{2}
\end{align*}
$$

In addition to we are written quadratic form as follow,

$$
\begin{equation*}
f(\boldsymbol{x}-\boldsymbol{y}, \boldsymbol{x}+\boldsymbol{y})=\sum_{i, j=1}^{n} a_{i j}\left(x_{i}-y_{i}\right)\left(x_{j}+y_{j}\right) \tag{2.2}
\end{equation*}
$$

From (2.1) and (2.2) we have as follow in the matrix form

$$
g(\boldsymbol{x}+\boldsymbol{y}, \boldsymbol{x}+\boldsymbol{y})=(X+Y) A(X+Y)^{T}
$$

If we is taken $\boldsymbol{x}+\boldsymbol{y}=\boldsymbol{v}$, we can be obtained $g(\boldsymbol{v}, \boldsymbol{v})=V A V^{T}$. Thus, the quadrqtic form is obtained as follows,

$$
\begin{align*}
g(\boldsymbol{v})= & \left(a_{21} b_{3}-a_{31} b_{2}\right) v_{1}^{2}+\left(-a_{12} b_{3}+a_{32} b_{1}\right) v_{2}^{2} 2.3 \tag{0.2}\\
& +\left(a_{13} b_{2}-a_{23} b_{1}\right) v_{3}^{2} \\
& +2\left[\frac{1}{2}\left(a_{11} b_{3}+a_{22} b_{3}+a_{31} b_{1}-a_{32} b_{2}\right) v_{1} v_{2}\right. \\
& +\frac{1}{2}\left(a_{11} b_{2}-a_{21} b_{1}+a_{23} b_{3}-a_{32} b_{2}\right) v_{1} v_{3} \\
& \left.+\frac{1}{2}\left(a_{12} b_{2}+a_{13} b_{3}-a_{22} b_{1}+a_{23} b_{1}\right) v_{2} v_{3}\right]
\end{align*}
$$

where $a_{i j}$ is computed from (2.2) equation and if we are taken of unit vector $\boldsymbol{s}=\left(s_{x}, s_{y}, s_{z}\right)$, we can be obtained quadratic surface as follow,

$$
\begin{equation*}
g(\boldsymbol{v})=\left[\langle\boldsymbol{v}, \boldsymbol{v}\rangle-\left(s_{x} v_{1}+s_{y} v_{2}+s_{z} v_{3}\right)^{2}\right] \tan \left(\frac{\Phi}{2}\right) \sin \Phi \tag{2.4}
\end{equation*}
$$

Now, from equation (2.4), Gauss curvature is obtined as follows,

$$
\begin{equation*}
K=\frac{\operatorname{det}\left(z, D_{x} z, D_{y} z\right)}{\|z\|^{4}} \tag{2.5}
\end{equation*}
$$

where is

$$
\begin{aligned}
& z= \frac{1}{2 \tan \frac{\phi}{2} \sin \phi} \nabla g \\
& x=\left(\frac{v_{2}-\left(s_{x} v_{1}+s_{y} v_{2}+s_{z} v_{3}\right) s_{y}}{v_{1}-\left(s_{x} v_{1}+s_{y} v_{2}+s_{z} v_{3}\right) s_{z}}, 1,0\right) \\
& y=\left(0, \frac{\left(v_{1}-\left(s_{x} v_{1}+s_{y} v_{2}+s_{z} v_{3}\right) s_{x}\right)\left(v_{3}-\left(s_{x} v_{1}+s_{y} v_{2}+s_{z} v_{3}\right) s_{z}\right)}{v_{2}-\left(s_{x} v_{1}+s_{y} v_{2}+s_{z} v_{3}\right) s_{y}}\right. \\
&\left.\quad v_{1}-\left(s_{x} v_{1}+s_{y} v_{2}+s_{z} v_{3}\right) s_{x}\right)
\end{aligned}
$$

Consequently, expressions $D_{x} z$ and $D_{y} z$ are computed and if they are written equation (2.5), we can be obtained as follows,

$$
K=0
$$

Corollary (2.1): The only surface of revolution with $K=0$ are the right circular cylinder, the right circular cone, and the plane.

Received October 13, 2016; Accepted November 5, 2016

References

[1] V. Asil, A.P. Aydın, Infinitesimal coplex homothetic exponantial motion, J.Inst. Math.\& Comp. Sci. 12. (2) (1999). 1-5
[2] V. Asil, A.P. Aydın, The roles in curves theory of exponential mappings in 3- dimentional Euclidean space, Pure and Applied Mathematica Sciences 33, (1-2), 1991.
[3] V. Asil, A.P. Aydın, M. Aydoğdu, The roles in curves theory of exponential mappings in 3-dimensional Lorentzian space, J.Inst. Math.\& Comp. Sci. 9 . (1) (1996).
[4] H.H. Hacısalihoğlu, Differential Geometry, Ankara University, 1996.
[5] T. Körpınar, On the Fermi-Walker Derivative for Inextensible Flows, Zeitschrift für Naturforschung A. 70 (7) (2015), 477-482
[6] T. Körpınar, B-tubular surfaces in Lorentzian Heisenberg Group H_{3}, Acta Scientiarum. Technology 37(1) (2015), 63-69
[7] T. Körpınar, New characterization of b-m2 developable surfaces, Acta Scientiarum. Technology 37(2) (2015), 245-250
[8] J.M. McCarthy, An introduction to theoretical kinematics, The MIT Prees Cambridge, Massachusetts London, England. 1990.

[^0]: ${ }^{1}$ Correspondence: E-mail: mustafayeneroglu@gmail.com

