Article

Bianchi Type III Universe Filled with Scalar Field Coupled with Electromagnetic Fields in $f(R, T)$ Theory of Gravity

${ }^{1}$ Sudhakar Naik and UmashankarKhetan College, Akola 444004, India
${ }^{2}$ Department of Mathematics, RTM, Nagpur University, Nagpur, India

Abstract

In $f(R, T)$ theory of gravity, we have studied the interacting scalar field and electromagnetic fields in Bianchi type III space-time, by considering the general cases $f(R, T)=f_{1}(R)+\lambda f_{2}(T), f(R, T)=f_{1}(R) f_{2}(T)$ and $f(R, T)=f(R)$ theory and its particular cases $f(R, T)=R+\lambda T, f(R, T)=R T, f(R)=R$. It is observed that, even though the cases of $f(R, T)$ theory are distinct, the convergent, non-singular and isotropic solution of metric functions can be evolved in each case along with the components of vector potential, corresponding to suitable integrable function in general cases.

Keywords: Bianchi Type III, $f(R, T)$ gravity, scalar field, electromagnetic field.

1. Introduction

Cosmological data from wide range of source have indicated that our universe is undergoing an accelerating expansion [2-8]. To explain this fact, two alternative theories are proposed: one concept of dark energy and other the amendment of general relativity leading to $f(R)$ and $f(R, T)$ theories [3, 4, 5] where R stands for Ricci scalar $R=g^{i j} R_{i j}, R_{i j}$ being Ricci tensor $\mathrm{T}=g^{i j} T_{i j}, T_{i j}$ being energy momentum tensor. The field equations of $f(R, T)$ theories due to Harko [3] are deduced by varying the action

$$
\begin{equation*}
s=\int f(R, T) \sqrt{-g} d^{4} x+\int L_{m} \sqrt{-g} d^{4} x \tag{1.1}
\end{equation*}
$$

where L_{m} is lagrangian and the other symbols have their usual meaning. Energy momentum tensor is given by

$$
\begin{equation*}
T_{i j}=L_{m} g_{i j}-2 \frac{\delta L_{m}}{\delta g^{i j}} \tag{1.2}
\end{equation*}
$$

Varying the action (1.1) with respect to $g^{i j}$ which yields as

[^0]\[

$$
\begin{equation*}
\delta s=\frac{1}{2 \chi} \int\left\{f_{R}(R, T) \frac{\delta R}{\delta g^{i j}}+f_{T}(R, T) \frac{\delta T}{\delta g^{i j}}+\frac{f(R, T)}{\sqrt{-g}} \frac{\delta(\sqrt{-g})}{\delta g^{i j}}+\frac{2 \chi}{\sqrt{-g}}\left(\frac{\delta\left(L_{m} \sqrt{-g}\right)}{\delta g^{i j}}\right)\right\} \sqrt{-g} d^{4} x \tag{1.3}
\end{equation*}
$$

\]

Here we define

$$
\begin{equation*}
\theta_{i j}=g^{\alpha \beta} \frac{\delta T_{\alpha \beta}}{\delta g^{i j}} \tag{1.4}
\end{equation*}
$$

By defining the generalized kronecker symbol $\frac{\delta g^{\alpha \beta}}{\delta g^{i j}}=\delta_{i}^{\alpha} \delta_{j}^{\beta}$ we can reduce

$$
\frac{\delta g^{\alpha \beta}}{\delta g^{i j}} T_{\alpha \beta}=\delta_{i}^{\alpha} \delta_{j}^{\beta} T_{\alpha \beta}=g^{p \alpha} g_{p i} g^{q \beta} g_{q j} T_{\alpha \beta}=T_{i j}
$$

Using above equations we can write

$$
\frac{\delta T}{\delta g^{i j}}=\frac{\delta\left(g^{\alpha \beta} T_{\alpha \beta}\right)}{\delta g^{i j}}=\frac{\delta g^{\alpha \beta}}{\delta g^{i j}} T_{\alpha \beta}+g^{\alpha \beta} \frac{\delta T_{\alpha \beta}}{\delta g^{i j}}=T_{i j}+\theta_{i j}
$$

Integrating (1.3), we can obtain

$$
\begin{equation*}
f_{R}(R, T) R_{i j}-\frac{1}{2} f(R, T) g_{i j}+\left(g_{i j} \square-\nabla_{i} \nabla_{j}\right) f_{R}(R, T)=\chi T_{j}-f_{T}(R, T)\left[T_{i j}+\theta_{i j}\right] \tag{1.5}
\end{equation*}
$$

This can be further written as

$$
\begin{align*}
f_{R}(R, T) G_{i j}+\frac{1}{2}\left[f_{R}(R, T) R-f(R, T)\right] g_{i j}+g_{i j} \square f_{R}(R, T) & -\nabla_{i} \nabla_{j} f_{R}(R, T) \\
& =\chi T_{i j}-f_{T}(R, T)\left[T_{i j}+\theta_{i j}\right] \tag{1.6}
\end{align*}
$$

where $\quad G_{i j}=R_{i j}-\frac{1}{2} R g_{i j}$
Taking trace of (1.5), we obtain

$$
\begin{equation*}
\square f_{R}(R, T)=\frac{2}{3} f(R, T)-\frac{1}{3} f_{R}(R, T) R+\frac{\chi}{3} T-\frac{1}{3} f_{T}(R, T)[T+\theta] \tag{1.7}
\end{equation*}
$$

Inserting (1.7) in (1.6), we can reorganized as

$$
\begin{align*}
G_{j}^{\mu}=\frac{1}{f_{R}(R, T)} & {\left[g^{i \mu} \nabla_{i} \nabla_{j} f_{R}(R, T)\right]-\frac{1}{6 f_{R}(R, T)}\left[f_{R}(R, T) R+f(R, T)\right] g_{j}^{\mu} } \\
& +\frac{\chi}{f_{R}(R, T)}\left[T_{j}^{\mu}-\frac{1}{3} T g_{j}^{\mu}\right]+\frac{1}{3} \frac{f_{T}(R, T)}{f_{R}(R, T)}[T+\theta] g_{j}^{\mu}-\frac{f_{T}(R, T)}{f_{R}(R, T)}\left[T_{j}^{\mu}+\theta_{j}^{\mu}\right] \tag{1.8}
\end{align*}
$$

Let us now calculate the tensor $\theta_{i j}$. Varying (1.2) with respect to metric tensor $g^{i j}$ and using the definition (1.4) we obtain

$$
\begin{equation*}
\theta_{i j}=-T_{i j}+2\left[\frac{\delta L_{m}}{\delta g^{i j}}-g^{\alpha \beta} \frac{\delta^{2} L_{m}}{\delta g^{i j} \delta g^{\alpha \beta}}\right] \tag{1.9}
\end{equation*}
$$

With this background, in this paper we discover the Bianchi type III space-time with interacting scalar field with electromagnetic one.

2. Matter field Lagrangian L_{m}

The electromagnetic field tensor

$$
F_{i j}=\frac{\partial V_{i}}{\partial x^{j}}-\frac{\partial V_{j}}{\partial x^{i}},
$$

where V_{i} is electromagnetic four potential.
The aforesaid the matter Lagrangian can be expressed as

$$
\begin{equation*}
L_{m}=\left[\frac{1}{4} F_{\eta \tau} F^{\eta \tau}-\frac{1}{2} \varphi_{, \eta} \varphi^{, \eta} \psi\right], \tag{2.1}
\end{equation*}
$$

where $\psi=\psi(I), I=V_{i} V^{i}$
The function ψ characterizes the interaction between the $\operatorname{scalar} \varphi$ and electromagnetic field [8].
Then the energy momentum tensor in (1.2) can conveniently be expressed in the mixed form

$$
\begin{equation*}
T_{j}^{i}=\left(F_{\alpha}^{i} F_{j}^{\alpha}+\frac{1}{4} g_{j}^{i} F_{\alpha \beta} F^{\alpha \beta}\right)-\left[\frac{1}{2} \psi g_{j}^{i}-\dot{\psi} V^{i} V_{j}\right] \varphi_{, \eta} \varphi^{, \eta}+\psi \varphi^{i} \varphi_{, j} \tag{2.2}
\end{equation*}
$$

Similarly the tensor θ_{j}^{i} in (1.9) can be written in mixed form as

$$
\begin{equation*}
\theta_{j}^{i}=-T_{j}^{i}-(\psi-I \dot{\psi}) \varphi^{i} \varphi_{, j}+I \ddot{\psi} \varphi_{, \eta} \varphi^{, \eta} V^{i} V_{j} \tag{2.3}
\end{equation*}
$$

The equations (2.2) and (2.3), after contraction yield

$$
\begin{align*}
& T=-(\psi-I \dot{\psi}) \varphi_{, \eta} \varphi^{, \eta} \tag{2.4}\\
& \theta=I^{2} \ddot{\psi} \varphi_{, \eta} \varphi^{, \eta} \tag{2.5}
\end{align*}
$$

3. Bianchi type III space-time

We consider the Bianchi type III space-time specified by

$$
\begin{equation*}
d s^{2}=A^{2} d x^{2}+B^{2} e^{-2 m x} d y^{2}+C^{2} d z^{2}-d t^{2} \tag{3.1}
\end{equation*}
$$

where A, B, C are functions of t and m is non-zero constant.
The non-vanishing components of Einstein tensor are

$$
\begin{array}{ll}
G_{1}^{1}=\frac{\ddot{B}}{B}+\frac{\ddot{C}}{C}+\frac{\dot{B} \dot{C}}{B C}, & G_{2}^{2}=\frac{\ddot{A}}{A}+\frac{\ddot{C}}{C}+\frac{\dot{A} \dot{C}}{A C} \\
G_{3}^{3}=-\frac{m^{2}}{A^{2}}+\frac{\ddot{A}}{A}+\frac{\ddot{B}}{B}+\frac{\dot{A} \dot{B}}{A B}, & G_{4}^{1}=\frac{m}{A^{2}}\left[\frac{\dot{A}}{A}-\frac{\dot{B}}{B}\right]
\end{array}
$$

Electromagnetic field tensor $F_{i j}$

To achieve the compatibility with the non-static space time (3.1), we assume the electromagnetic vector potential in the form

$$
\begin{equation*}
V_{i}=\left[\alpha(x) V_{1}(t), V_{2}(t), V_{3}(t), V_{4}(t)\right], \tag{3.2}
\end{equation*}
$$

Then it is easy to deduce

$$
\begin{align*}
& I=\left[\frac{\alpha^{2} V_{1}{ }^{2}}{A^{2}}+\frac{V_{2}^{2}}{B^{2}} e^{2 m x}+\frac{V_{3}{ }^{2}}{C^{2}}-V_{4}^{2}\right] \tag{3.3}\\
& F_{14}=\alpha \dot{V}_{1}, \quad F_{24}=\dot{V}_{2}, \quad F_{34}=\dot{V}_{3} \tag{3.4}\\
& F_{i j} F^{i j}=-2\left[\frac{\alpha^{2} \dot{V}_{1}^{2}}{A^{2}}+\frac{\dot{V}_{2}{ }^{2}}{B^{2}} e^{2-x}+\frac{\dot{V}_{3}{ }^{2}}{C^{2}}\right] \tag{3.5}\\
& \varphi_{i} \varphi^{i}=-\dot{\varphi}^{2} \tag{3.6}
\end{align*}
$$

In reference to the above quantities at our disposal, the components of energy momentum tensors from (2.2) becomes

$$
\begin{align*}
& T_{1}^{1}=\frac{1}{2} \frac{\alpha^{2} \dot{V}_{1}{ }^{2}}{A^{2}}-\frac{1}{2} \frac{\dot{V}_{2}^{2}}{B^{2}} e^{2 m x}-\frac{1}{2} \frac{\dot{V}_{3}^{2}}{C^{2}}+\frac{1}{2} \psi \dot{\varphi}^{2}-\dot{\psi} \dot{\varphi}^{2} \frac{\alpha^{2} V_{1}{ }^{2}}{A^{2}} \tag{3.7a}\\
& T_{2}^{1}=\frac{\alpha \dot{V}_{1} \dot{v}_{2}}{A^{2}}-\dot{\psi} \dot{\varphi}^{2} \frac{\alpha V_{1} V_{2}}{A^{2}} \tag{3.7b}\\
& T_{3}^{1}=\frac{\alpha \dot{V}_{1} \dot{v}_{3}}{A^{2}}-\dot{\psi} \dot{\varphi}^{2} \frac{\alpha V_{1} V_{3}}{A^{2}} \tag{3.7c}\\
& T_{4}^{1}=\dot{\psi} \dot{\varphi}^{2} \frac{\alpha V_{1} V_{4}}{A^{2}} \tag{3.7d}\\
& T_{2}^{2}=-\frac{1}{2} \frac{\alpha^{2} \dot{V}_{1}^{2}}{A^{2}}+\frac{1}{2} \frac{\dot{V}_{2}^{2}}{B^{2}} e^{2 m x}-\frac{1}{2} \frac{\dot{V}_{3}^{2}}{C^{2}}+\frac{1}{2} \psi \dot{\varphi}^{2}-\dot{\psi} \dot{\varphi}^{2} \frac{V_{2}{ }^{2}}{B^{2}} \tag{3.7e}
\end{align*}
$$

$$
\begin{align*}
& T_{3}^{2}=\frac{\dot{V}_{2} \dot{v}_{3}}{B^{2}} e^{2 m x}-\dot{\psi} \dot{\varphi}^{2} \frac{V_{2} V_{3}}{B^{2}} e^{2 m x} \tag{3.7f}\\
& T_{3}^{3}=-\frac{1}{2} \frac{\alpha^{2} \dot{V}_{1}^{2}}{A^{2}}-\frac{1}{2} \frac{\dot{V}_{2}^{2}}{B^{2}} e^{2 m x}+\frac{1}{2} \frac{\dot{V}_{3}^{2}}{C^{2}}+\frac{1}{2} \psi \dot{\varphi}^{2}-\dot{\psi} \dot{\varphi}^{2} \frac{V_{3}^{2}}{C^{2}} \tag{3.7~g}\\
& T_{4}^{4}=\frac{1}{2} \frac{\alpha^{2} \dot{V}_{1}^{2}}{A^{2}}+\frac{1}{2} \frac{\dot{V}_{2}^{2}}{B^{2}} e^{2 m x}+\frac{1}{2} \frac{\dot{V}_{3}^{2}}{C^{2}}-\frac{1}{2} \psi \dot{\varphi}^{2}+\dot{\psi} \dot{\varphi}^{2} V_{4}^{2} \tag{3.7h}\\
& T=(\psi-I \dot{\psi}) \dot{\varphi}^{2} \tag{3.7i}
\end{align*}
$$

Similarly the components of tensors θ_{j}^{i} from (2.3), assumes the values

$$
\begin{align*}
& \theta_{1}^{1}=-T_{1}^{1}-I \ddot{\psi} \dot{\varphi}^{2} \frac{\alpha^{2} V_{1}^{2}}{A^{2}} \tag{3.8a}\\
& \theta_{2}^{1}=-T_{2}^{1}-I \ddot{\psi} \dot{\varphi}^{2} \frac{\alpha V_{1} V_{2}}{A^{2}} \tag{3.8b}\\
& \theta_{3}^{1}=-T_{3}^{1}-I \ddot{\psi} \dot{\varphi}^{2} \frac{\alpha V_{1} V_{3}}{A^{2}} \tag{3.8c}\\
& \theta_{4}^{1}=-T_{4}^{1}-I \ddot{\psi} \dot{\varphi}^{2} \frac{\alpha V_{1} V_{4}}{A^{2}} \tag{3.8d}\\
& \theta_{2}^{2}=-T_{2}^{2}-I \ddot{\psi} \dot{\varphi}^{2} \frac{V_{2}^{2}}{B^{2}} e^{2 m x} \tag{3.8e}\\
& \theta_{3}^{2}=-T_{3}^{2}-I \ddot{\psi} \dot{\varphi}^{2} \frac{V_{2} V_{3}}{B^{2}} e^{2 m x} \tag{3.8f}\\
& \theta_{3}^{3}=-T_{3}^{3}-I \ddot{\psi} \dot{\varphi}^{2} \frac{V_{3}^{2}}{C^{2}} \tag{3.8~g}\\
& \theta_{4}^{4}=-T_{4}^{4}+(\psi-I \dot{\psi}) \dot{\varphi}^{2}+I \ddot{\psi} \dot{\varphi}^{2} V_{4}^{2} \tag{3.8h}\\
& \theta=-I^{2} \ddot{\psi} \dot{\varphi}^{2} \tag{3.8i}
\end{align*}
$$

Following Saha [1] the variation of the matter Lagrangiam L_{m} in (2.1) with respect to the electromagnetic field gives us

$$
\frac{1}{\sqrt{-g}} \frac{\partial}{\partial x^{j}}\left(\sqrt{-g} F^{i j}\right)-\left(\varphi_{, j} \varphi^{, j}\right) \dot{\psi} A^{i}=0, \quad \text { where } \quad \dot{\psi}=\frac{\partial \psi}{\partial I}
$$

Noting (3.2) and (3.4) above equation gives the following

$$
\begin{align*}
& \text { for } i=1, j=4 \Rightarrow\left(\frac{\dot{V}_{1}}{V_{1}}\right)+\frac{\dot{V}_{1}{ }^{2}}{V_{1}{ }^{2}}+\frac{\dot{V}_{1}}{V_{1}}\left[\frac{\dot{C}}{C}+\frac{\dot{B}}{B}-\frac{\dot{A}}{A}\right]=\dot{\psi} \dot{\varphi}^{2} \tag{3.9a}\\
& \text { for } i=2, j=4 \Rightarrow\left(\frac{\dot{V}_{2}}{V_{2}}\right)+\frac{\dot{\underline{V}}_{2}{ }^{2}}{V_{2}{ }^{2}}+\frac{\dot{V}_{2}}{V_{2}}\left[\frac{\dot{A}}{A}+\frac{\dot{C}}{C}-\frac{\dot{B}}{B}\right]=\dot{\psi} \dot{\varphi}^{2} \tag{3.9b}
\end{align*}
$$

$$
\begin{align*}
& \text { for } i=3, j=4 \Rightarrow\left(\frac{\dot{V}_{3}}{V_{3}}\right)+\frac{\dot{V}_{3}{ }^{2}}{V_{3}{ }^{2}}+\frac{\dot{V}_{3}}{V_{3}}\left[\frac{\dot{B}}{B}+\frac{\dot{A}}{A}-\frac{\dot{C}}{C}\right]=\dot{\psi} \dot{\varphi}^{2} \tag{3.9c}\\
& \text { for } i=4, j=1 \Rightarrow \alpha(x)=k_{1} e^{m x} \tag{3.9d}\\
& \text { for } i=4, j=4 \Rightarrow V_{4}=0, \tag{3.9e}
\end{align*}
$$

where k_{1} is constant of integration.
Since the expression of the Einstein tensor in (1.8) is complicated, the solution of the Einstein field equation in general cannot be obtained. With this reality we take recourse to the particular cases of the function $f(R, T)$ and there upon try to obtain the solution.

4. Sub case $f(R, T)=f_{1}(R)+\lambda f_{2}(T)$

In this case we follow the notations

$$
f_{R}(R, T)=\frac{\partial f(R, T)}{\partial R}=\dot{f}_{1}(R), \quad f_{T}(R, T)=\frac{\partial f(R, T)}{\partial T}=\lambda \dot{f}_{2}(T)
$$

Then (1.8) reduces to the form

$$
\left.\begin{array}{c}
G_{j}^{\mu}=\frac{1}{\dot{f}_{1}(R)}\left[g^{i \mu} \nabla_{i} \nabla_{j} \dot{f}_{1}(R)\right]-\frac{1}{6 \dot{f}_{1}(R)}\left[\dot{f}_{1}(R) R+f_{1}(R)+\lambda f_{2}(T)\right] g_{j}^{\mu}+\frac{\chi}{\dot{f}_{1}(R)}\left[T_{j}^{\mu}-\frac{1}{3} T g_{j}^{\mu}\right]+ \\
\frac{\lambda}{3} \dot{f}_{2}(T) \tag{4.1}\\
\dot{f}_{1}(R)
\end{array} T+\theta\right] g_{j}^{\mu}-\frac{\lambda \dot{f}_{2}(T)}{\dot{f}_{1}(R)}\left[T_{j}^{\mu}+\theta_{j}^{\mu}\right],
$$

Since for the space time (3.1), we have

$$
G_{2}^{1}=0, \quad G_{3}^{1}=0, \quad G_{3}^{2}=0
$$

Using (3.7) and (3.8), the field equations (4.1) yield

$$
\begin{align*}
& \frac{\dot{V}_{1} \dot{V}_{2}}{V_{1} V_{2}}=\dot{\psi} \dot{\varphi}^{2}-\frac{\lambda}{\chi} \dot{f}_{2}(T) I \ddot{\psi} \dot{\varphi}^{2} \tag{4.2a}\\
& \frac{\dot{V}_{1} \dot{V}_{3}}{V_{1} V_{3}}=\dot{\psi} \dot{\varphi}^{2}-\frac{\lambda}{\chi} \dot{f}_{2}(T) I \ddot{\psi} \dot{\varphi}^{2} \tag{4.2b}\\
& \frac{\dot{V}_{2} \dot{V}_{3}}{V_{2} V_{3}}=\dot{\psi} \dot{\varphi}^{2}-\frac{\lambda}{\chi} \dot{f}_{2}(T) I \ddot{\psi} \dot{\varphi}^{2} \tag{4.2c}
\end{align*}
$$

From (4.2), we can write

$$
\begin{equation*}
\frac{\dot{V}_{1} \dot{V}_{2}}{V_{1} V_{2}}=\frac{\dot{V}_{2} \dot{V}_{3}}{V_{2} V_{3}}=\frac{\dot{V}_{1} \dot{V}_{3}}{V_{1} V_{3}}=\dot{\psi} \dot{\varphi}^{2}-\frac{\lambda}{\chi} \dot{f}_{2}(T) I \ddot{\psi} \dot{\varphi}^{2} \tag{4.3}
\end{equation*}
$$

or we can rewrite it as

$$
\begin{equation*}
\frac{\dot{V}_{1}}{V_{1}}=\frac{\dot{V}_{2}}{V_{2}}=\frac{\dot{V}_{3}}{V_{3}}=\frac{\dot{h}_{1}}{h_{1}} \text { say, } \tag{4.4}
\end{equation*}
$$

where h_{1} is some unknown function of t.
Inserting (4.4) in (4.3) it yields

$$
\begin{equation*}
\left(\frac{\dot{h}_{1}}{h_{1}}\right)^{2}=\left(\frac{\dot{h}_{1}}{h_{1}}\right)^{2}=\left(\frac{\dot{h}_{1}}{h_{1}}\right)^{2}=\dot{\psi} \dot{\varphi}^{2}-\frac{\lambda}{\chi} \dot{f}_{2}(T) I \ddot{\psi} \dot{\varphi}^{2} \tag{4.5}
\end{equation*}
$$

Up on the integration of equation (4.4) with respect to t, we get

$$
\begin{equation*}
V_{1}=k_{2} h_{1}, \quad V_{2}=k_{3} h_{1}, \quad V_{3}=k_{4} h_{1} \tag{4.6}
\end{equation*}
$$

where k_{2}, k_{3}, k_{4} are constants of integration.
Now our plan is to express the components of T_{j}^{i} in (3.7) in terms of T_{4}^{4}. For this we consider the expression

$$
\begin{align*}
\frac{\alpha^{2} \dot{V}_{1}^{2}}{A^{2}}+\frac{\dot{V}_{2}^{2}}{B^{2}} e^{2 m x}+\frac{{\dot{V_{3}^{3}}}_{2}^{C^{2}}}{} & =\left[\frac{\alpha^{2} V_{1}^{2}}{A^{2}}+\frac{V_{2}^{2}}{B^{2}} e^{2 m x}+\frac{V_{3}^{2}}{C^{2}}\right]\left(\frac{\dot{h}_{1}}{h_{1}}\right)^{2} \text { by (4.4) } \\
& =I\left(\frac{\dot{h}_{1}}{h_{1}}\right)^{2} \quad \text { by }(3.3) \text { and }(3.9 \mathrm{e}) \\
& =I \dot{\psi} \dot{\varphi}^{2}-\frac{\lambda}{\chi} \dot{f}_{2}(T) I^{2} \ddot{\psi} \dot{\varphi}^{2} \quad \text { by }(4.5) \tag{4.7}
\end{align*}
$$

We attempt to express the components of T_{j}^{i} in (3.7) in terms of T_{4}^{4} by using (4.4), (4.5) and (4.7) as follows

$$
\begin{align*}
& T_{4}^{4}=\frac{1}{2} I \dot{\psi} \dot{\varphi}^{2}-\frac{1}{2} \frac{\lambda}{\chi} \dot{f}_{2}(T) I^{2} \ddot{\psi} \dot{\varphi}^{2}-\frac{1}{2} \psi \dot{\varphi}^{2} \tag{4.8a}\\
& T_{1}^{1}=-T_{4}^{4}-\frac{\lambda}{\chi} \dot{f}_{2}(T) I \ddot{\psi} \dot{\varphi}^{2} \frac{\alpha^{2} V_{1}^{2}}{A^{2}} \tag{4.8b}\\
& T_{2}^{1}=-\frac{\lambda}{\chi} \dot{f}_{2}(T) I \ddot{\psi} \dot{\varphi}^{2} \frac{\alpha V_{1} v_{2}}{A^{2}} \tag{4.8c}\\
& T_{3}^{1}=-\frac{\lambda}{\chi} \dot{f}_{2}(T) I \ddot{\psi} \dot{\varphi}^{2} \frac{\alpha V_{1} v_{3}}{A^{2}} \tag{4.8d}\\
& T_{4}^{1}=0 \tag{4.8e}\\
& T_{2}^{2}=-T_{4}^{4}-\frac{\lambda}{\chi} \dot{f}_{2}(T) I \ddot{\psi} \dot{\varphi}^{2} \frac{V_{2}^{2}}{B^{2}} e^{2 m} \tag{4.8f}
\end{align*}
$$

$$
\begin{align*}
& T_{3}^{2}=-\frac{\lambda}{\chi} \dot{f}_{2}(T) I \ddot{\psi} \dot{\varphi}^{2} \frac{V_{2} v_{3}}{B^{2}} \tag{4.8~g}\\
& T_{3}^{3}=-T_{4}^{4}-\frac{\lambda}{\chi} \dot{f}_{2}(T) I \ddot{\psi} \dot{\varphi}^{2} \frac{V_{3}^{2}}{C^{2}} \tag{4.8h}\\
& T=(\psi-I \dot{\psi}) \dot{\varphi}^{2} \tag{4.8i}
\end{align*}
$$

We consider the non-vanishing components of Einstein tensors $G_{1}^{1}, G_{2}^{2}, G_{3}^{3}, G_{4}^{1}$ from (4.1)

$$
\begin{align*}
& \frac{\ddot{B}}{B}+\frac{\ddot{C}}{C}+\frac{\dot{B} \dot{C}}{B C}=\frac{\dot{A}}{A} \ddot{f}_{1}(R) \frac{d R}{\dot{f}_{1}(R)} \frac{1}{d t}-\frac{1}{6 \dot{f}_{1}(R)}\left[\dot{f}_{1}(R) R+f_{1}(R)+\lambda f_{2}(T)\right]+\frac{\chi}{\dot{f}_{1}(R)}\left[T_{1}^{1}-\frac{1}{3} T\right]+ \\
& \frac{\lambda \dot{f}_{2}(T)}{3 \dot{f_{1}(R)}}[T+\theta]-\frac{\lambda \dot{f}_{2}(T)}{3 \dot{f}_{1}(R)}\left[T_{1}^{1}+\theta_{1}^{1}\right] \tag{4.9a}\\
& \frac{\ddot{A}}{A}+\frac{\ddot{C}}{C}+\frac{\dot{A} \dot{C}}{A C}=\frac{\dot{B}}{B} \frac{\ddot{f}_{1}(R)}{\dot{f}_{1}(R)} \frac{d R}{d t}-\frac{1}{6 \dot{f}_{1}(R)}\left[\dot{f}_{1}(R) R+f_{1}(R)+\lambda f_{2}(T)\right]+\frac{\chi}{\dot{f}_{1}(R)}\left[T_{2}^{2}-\frac{1}{3} T\right]+ \\
& \frac{\lambda \dot{f}_{2}(T)}{3 \dot{f}_{1}(R)}[T+\theta]-\frac{\lambda \dot{f}_{2}(T)}{3 \dot{f}_{1}(R)}\left[T_{2}^{2}+\theta_{2}^{2}\right] \tag{4.9b}\\
& -\frac{m^{2}}{A^{2}}+\frac{\ddot{A}}{A}+\frac{\ddot{B}}{B}+\frac{\dot{A} \dot{B}}{A b}=\frac{\dot{C}}{C} \ddot{f}_{1}(R) \frac{d R}{\dot{f}_{1}(R)} \frac{1}{d D}-\frac{1}{6 \dot{f}_{1}(R)}\left[\dot{f}_{1}(R) R+f_{1}(R)+\lambda f_{2}(T)\right]+\frac{\chi}{\dot{f}_{1}(R)}\left[T_{3}^{3}-\frac{1}{3} T\right]+ \\
& \frac{\lambda \dot{f}_{2}(T)}{3 \dot{f_{1}(R)}}[T+\theta]-\frac{\lambda \dot{f_{2}}(T)}{3 \dot{f}_{1}(R)}\left[T_{3}^{3}+\theta_{3}^{3}\right] \tag{4.9c}\\
& \frac{\dot{A}}{A}-\frac{\dot{B}}{B}=0 \tag{4.9d}
\end{align*}
$$

Upon integration of the equation (4.9d), we obtain

$$
\begin{equation*}
A=k_{5} B \tag{4.9e}
\end{equation*}
$$

where k_{5} is constant of integration.
Subtracting (4.9b) from (4.9a), (4.9c) from (4.9b) and (4.9a) from (4.9c) we get

$$
\begin{align*}
& \frac{\ddot{B}}{B}-\frac{\ddot{A}}{A}+\frac{\dot{C}}{C}\left[\frac{\dot{B}}{B}-\frac{\dot{A}}{A}\right]+\left(\frac{\dot{B}}{B}-\frac{\dot{A}}{A}\right) \frac{\ddot{1}_{1}(R)}{f_{1}(R)} \frac{d R}{d t}=\frac{\chi}{f_{1}(R)}\left[T_{1}^{1}-T_{2}^{2}\right]+\frac{\lambda \dot{f}_{2}(T)}{\dot{f}_{1}(R)}\left[\left(T_{2}^{2}+\theta_{2}^{2}\right)-\left(T_{1}^{1}+\theta_{1}^{1}\right)\right] \tag{4.10a}\\
& \frac{\ddot{C}}{C}-\frac{B}{B}+\frac{\dot{A}}{A}\left[\frac{\dot{\bar{C}}}{C}-\frac{\dot{B}}{B}\right]+\left(\frac{\dot{C}}{C}-\frac{\dot{B}}{B}\right) \frac{\tilde{f}_{1}(R)}{\dot{f}_{1}(R)} \frac{d R}{d t}+\frac{m^{2}}{A^{2}}=\frac{\chi}{\dot{f}_{1}(R)}\left[T_{2}^{2}-T_{3}^{3}\right]+\frac{\lambda \dot{f}_{2}(T)}{\dot{f}_{1}(R)}\left[\left(T_{3}^{3}+\theta_{3}^{3}\right)-\left(T_{2}^{2}+\theta_{2}^{2}\right)\right] \tag{4.10b}\\
& \frac{\ddot{A}}{A}-\frac{\ddot{C}}{c}+\frac{\dot{B}}{B}\left[\frac{\dot{A}}{A}-\frac{\dot{C}}{C}\right]+\left(\frac{\dot{A}}{A}-\frac{\dot{C}}{C}\right) \frac{\ddot{1}_{1}(R)}{\dot{f}_{1}(R)} \frac{d R}{d t}-\frac{m^{2}}{A^{2}}=\frac{\chi}{\dot{f}_{1}(R)}\left[T_{3}^{3}-T_{1}^{1}\right]+\frac{\lambda \dot{f}_{2}(T)}{\dot{f}_{1}(R)}\left[\left(T_{1}^{1}+\theta_{1}^{1}\right)-\left(T_{3}^{3}+\theta_{3}^{3}\right)\right] \tag{4.10c}
\end{align*}
$$

Using (3.8) and (4.8) the equations (4.10) reduces

$$
\begin{align*}
& \frac{\ddot{B}}{B}-\frac{\ddot{A}}{A}+\frac{\dot{C}}{C}\left[\frac{\dot{B}}{B}-\frac{\dot{A}}{A}\right]+\left(\frac{\dot{B}}{B}-\frac{\dot{A}}{A}\right) \frac{\ddot{f}_{1}(R)}{\dot{f}_{1}(R)} \frac{d R}{d t}=0 \tag{4.11a}\\
& \frac{\ddot{C}}{C}-\frac{\ddot{B}}{B}+\frac{\dot{A}}{A}\left[\frac{\dot{C}}{C}-\frac{\dot{B}}{B}\right]+\left(\frac{\dot{C}}{C}-\frac{\dot{B}}{B}\right) \ddot{f}_{1}(R) \tag{4.11b}\\
& \dot{f}_{1}(R) \tag{4.11c}\\
& \frac{d R}{d t}+\frac{m^{2}}{A^{2}}=0 \\
& \frac{\ddot{A}}{A}-\frac{\ddot{C}}{C}+\frac{\dot{B}}{B}\left[\frac{\dot{A}}{A}-\frac{\dot{C}}{C}\right]+\left(\frac{\dot{A}}{A}-\frac{\dot{C}}{C}\right) \frac{\ddot{f}_{1}(R)}{\dot{f}_{1}(R)} \frac{d R}{d t}-\frac{m^{2}}{A^{2}}=0
\end{align*}
$$

Eliminating $\frac{m^{2}}{A^{2}}$ between the equations (4.11b) and (4.11c), we obtain

$$
\begin{equation*}
\frac{\ddot{A}}{A}-\frac{\ddot{B}}{B}+\frac{\dot{C}}{C}\left[\frac{\dot{A}}{A}-\frac{\dot{B}}{B}\right]+\left(\frac{\dot{A}}{A}-\frac{\dot{B}}{B}\right) \frac{\ddot{f}_{1}(R)}{\dot{f}_{1}(R)} \frac{d R}{d t}=0 \tag{4.11d}
\end{equation*}
$$

Upon integration of the equations (4.11a) and (4.11d) yield

$$
\begin{align*}
& \frac{A}{B}=k_{7} \exp \left\{k_{6} \int \frac{1}{A B C \dot{f}_{1}(R)} d t\right\} \tag{4.12a}\\
& \frac{B}{A}=k_{9} \exp \left\{k_{8} \int \frac{1}{A B C \dot{f_{1}(R)}} d t\right\} \tag{4.12b}
\end{align*}
$$

where k 's are constants of integration, such that

$$
k_{7} k_{9}=1 \text { and } k_{6}+k_{8}=0
$$

By using (4.4) we can write the equation (3.9) as

$$
\begin{align*}
& \left(\frac{\dot{h}_{1}}{h_{1}}\right)^{\cdot}+\frac{\dot{h}_{1}{ }^{2}}{h_{1}{ }^{2}}+\frac{\dot{h}_{1}}{h_{1}}\left[\frac{\dot{C}}{C}+\frac{\dot{B}}{B}-\frac{\dot{A}}{A}\right]=\dot{\psi} \dot{\varphi}^{2} \tag{4.13a}\\
& \left(\frac{\dot{h}_{1}}{h_{1}}\right)^{\cdot}+\frac{\dot{h}_{1}{ }^{2}}{h_{1}{ }^{2}}+\frac{\dot{h}_{1}}{h_{1}}\left[\frac{\dot{G}}{A}+\frac{\dot{C}}{C}-\frac{\dot{B}}{B}\right]=\dot{\psi} \dot{\varphi}^{2} \tag{4.13b}\\
& \left(\frac{\dot{h}_{1}}{h_{1}}\right)^{\cdot}+\frac{\dot{h}_{1}{ }^{2}}{h_{1}{ }^{2}}+\frac{\dot{h}_{1}}{h_{1}}\left[\frac{\dot{B}}{B}+\frac{\dot{A}}{A}-\frac{\dot{C}}{C}\right]=\dot{\psi} \dot{\varphi}^{2} \tag{4.13c}
\end{align*}
$$

This equation further imply that

$$
\begin{align*}
& \frac{\dot{C}}{C}+\frac{\dot{B}}{B}-\frac{\dot{A}}{A}=\frac{\dot{A}}{A}+\frac{\dot{C}}{C}-\frac{\dot{B}}{B}=\frac{\dot{B}}{B}+\frac{\dot{A}}{A}-\frac{\dot{C}}{C} \\
\text { or } & \quad \dot{\dot{A}} \tag{4.14}\\
A & \frac{\dot{B}}{B}=\frac{\dot{C}}{C}
\end{align*}
$$

Upon integration of the equation (4.14) yields

$$
\begin{equation*}
A=k_{10} B, \quad B=k_{11} C, \quad C=k_{12} A \tag{4.15}
\end{equation*}
$$

where k_{10}, k_{11}, k_{12} are constants of integration.

We observe that C is scalar multiple of A, therefore we can write explicitly as

$$
\begin{align*}
& A=\left(A^{2} B\right)^{\frac{1}{3}} k_{13} \exp \left\{k_{14} \int \frac{1}{A B C \dot{f}_{1}(R)} d t\right\} \tag{4.16a}\\
& B=\left(A^{2} B\right)^{\frac{1}{3}} k_{15} \exp \left\{k_{16} \int \frac{1}{A B C \dot{f}_{1}(R)} d t\right\} \tag{4.16b}\\
& C=\left(A^{2} B\right)^{\frac{1}{3}} k_{17} \exp \left\{k_{18} \int \frac{1}{A B C \dot{f}_{1}(R)} d t\right\} \tag{4.16c}
\end{align*}
$$

If we convert A into C we can rewrite as

$$
\begin{align*}
& A=(A B C)^{\frac{1}{3}} k_{9} \exp \left\{k_{14} \int \frac{1}{A B C \dot{f}_{1}(R)} d t\right\} \tag{4.17a}\\
& B=(A B C)^{\frac{1}{3}} k_{20} \exp \left\{k_{16} \int \frac{1}{A B C \dot{f}_{1}(R)} d t\right\} \tag{4.17b}\\
& C=(A B)^{\frac{1}{3}} k_{21} \exp \left\{k_{18} \int \frac{1}{A B C \dot{f_{1}(R)}} d t\right\} \tag{4.17c}
\end{align*}
$$

where k 's are constants of integration.
Inserting (4.14) in (4.13)

$$
\begin{equation*}
\left(\frac{\dot{h}_{1}}{h_{1}}\right)^{\cdot}+\frac{\dot{h}_{1}{ }^{2}}{h_{1}{ }^{2}}+\frac{\dot{h}_{1}}{h_{1}}\left[\frac{\dot{d}}{A}\right]=\dot{\psi} \dot{\varphi}^{2} \tag{4.18}
\end{equation*}
$$

But from (4.5) we have

$$
\begin{equation*}
\dot{\psi} \dot{\varphi}^{2}=\left(\frac{\dot{h}_{1}}{h_{1}}\right)^{2}+\frac{\lambda}{\chi} \dot{f}_{2}(T) I \ddot{\psi} \dot{\varphi}^{2} \tag{4.19}
\end{equation*}
$$

Inserting (4.19) in (4.18) we have

$$
\begin{equation*}
\left(\frac{\dot{h}_{1}}{h_{1}}\right)^{\cdot}+\frac{\dot{h}_{1}}{h_{1}}\left[\frac{\dot{A}}{A}\right]=\frac{\lambda}{\chi} \dot{f}_{2}(T) I \ddot{\psi} \dot{\varphi}^{2} \tag{4.20}
\end{equation*}
$$

If we confine the function ψ as linear function $\ddot{\psi}=0$ or $\psi=k_{22} I+k_{23}$ then the equation (4.20) has perfect solution

$$
\begin{equation*}
h_{1}=k_{25} \exp \left\{k_{24} \int \frac{1}{A} d t\right\} \tag{4.21}
\end{equation*}
$$

With the help of (4.21), the equations (4.6) convert in to

$$
\begin{equation*}
V_{1}=k_{26} \exp \left\{k_{24} \int \frac{1}{A} d t\right\} \tag{4.22a}
\end{equation*}
$$

$$
\begin{align*}
& V_{2}=k_{27} \exp \left\{k_{24} \int \frac{1}{A} d t\right\} \tag{4.22b}\\
& V_{3}=k_{28} \exp \left\{k_{24} \int \frac{1}{A} d t\right\} \tag{4.22c}
\end{align*}
$$

where k 's are constant of integration.

5. Subcase $f(R, T)=f_{1}(R) f_{2}(T)$

In this case we follow the notations

$$
\begin{equation*}
f_{R}(R, T)=\frac{\partial f(R, T)}{\partial R}=\dot{f}_{1}(R) f_{2}(T), f_{T}(R, T)=\frac{\partial f(R, T)}{\partial T}=f_{1}(R) \dot{f}_{2}(T) \tag{5.1}
\end{equation*}
$$

With the help of (5.1), the field equation (1.8) reduces to

$$
\begin{align*}
G_{j}^{i}=\frac{1}{\dot{f}_{1}(R) f_{2}(T)} & {\left[g^{i m} \nabla_{m} \nabla_{j} \dot{f}_{1}(R) f_{2}(T)\right]-\frac{1}{6 \dot{f}_{1}(R) f_{2}(T)}\left[\dot{f}_{1}(R) f_{2}(T) \mathrm{R}+f_{1}(R) f_{2}(T)\right] g_{j}^{i} } \\
& +\frac{\chi}{f_{1}(R) f_{2}(T)}\left[T_{j}^{i}-\frac{1}{3} T g_{j}^{i}\right]+\frac{1}{3} \frac{f_{1}(R) \dot{f_{2}}(T)}{\dot{f}_{1}(R) f_{2}(T)}[T+\theta] g_{j}^{i}-\frac{f_{1}(R) \dot{f_{2}(T)}}{\dot{f}_{1}(R) f_{2}(T)}\left[T_{j}^{i}+\theta_{j}^{i}\right] \tag{5.2}
\end{align*}
$$

Since for the space-time (3.1), we have

$$
G_{2}^{1}=0, G_{3}^{1}=0, G_{3}^{2}=0
$$

Using (3.7) and (3.8), the field equation (5.2) yield

$$
\begin{align*}
& \frac{\dot{V}_{1} \dot{V}_{2}}{V_{1} V_{2}}=\dot{\psi} \dot{\varphi}^{2}-\frac{f_{1}(R) \dot{f}_{2}(T)}{\chi} I \ddot{\psi} \dot{\varphi}^{2} \tag{5.3a}\\
& \frac{\dot{V}_{1} \dot{V}_{3}}{V_{1} V_{3}}=\dot{\psi} \dot{\varphi}^{2}-\frac{f_{1}(R) \dot{f}_{2}(T)}{\chi} I \ddot{\psi} \dot{\varphi}^{2} \tag{5.3b}\\
& \frac{\dot{V}_{2} \dot{V}_{3}}{V_{2} V_{3}}=\dot{\psi} \dot{\varphi}^{2}-\frac{f_{1}(R) \dot{f}_{2}(T)}{\chi} I \ddot{\psi} \dot{\varphi}^{2} \tag{5.3c}
\end{align*}
$$

From (5.3) we can write

$$
\begin{equation*}
\frac{\dot{V}_{1} \dot{V}_{2}}{V_{1} V_{2}}=\frac{\dot{V}_{2} \dot{V}_{3}}{V_{2} V_{3}}=\frac{\dot{V}_{1} \dot{V}_{3}}{V_{1} V_{3}}=\dot{\psi} \dot{\varphi}^{2}-\frac{f_{1}(R) \dot{f}_{2}(T)}{\chi} I \ddot{\psi} \dot{\varphi}^{2} \tag{5.4}
\end{equation*}
$$

or $\quad \frac{\dot{V}_{1}}{V_{1}}=\frac{\dot{V}_{2}}{V_{2}}=\frac{\dot{V}_{3}}{V_{3}} \equiv \frac{\dot{h}_{7}}{h_{7}}$, say
Inserting (5.5) in (5.4), we get

$$
\begin{equation*}
\left(\frac{\dot{h}_{7}}{h_{7}}\right)^{2}=\left(\frac{\dot{h}_{7}}{h_{7}}\right)^{2}=\left(\frac{\dot{h}_{7}}{h_{7}}\right)^{2}=\dot{\psi} \dot{\varphi}^{2}-\frac{f_{1}(R) \dot{f}_{2}(T)}{\chi} I \ddot{\psi} \dot{\varphi}^{2} \tag{5.6}
\end{equation*}
$$

Up on integration of the equation (5.5) yield

$$
\begin{equation*}
V_{1}=m_{1} h_{7} V_{2}=m_{2} h_{7} V_{3}=m_{3} h_{7} \tag{5.7}
\end{equation*}
$$

where m_{1}, m_{2}, m_{3} are constants of integration.
Now our plan is to express the components of T_{j}^{i} in (3.7) in terms of T_{4}^{4}. For this we consider the expression

$$
\begin{align*}
\frac{\alpha^{2} \dot{V}_{1}^{2}}{A^{2}}+\frac{\dot{V}_{2}^{2}}{B^{2}} e^{2 m x}+\frac{\dot{V}_{3}^{2}}{C^{2}} & =\left[\frac{\alpha^{2} V_{1}^{2}}{A^{2}}+\frac{V_{2}^{2}}{B^{2}} e^{2 m x}+\frac{V_{3}^{2}}{C^{2}}\right]\left(\frac{\dot{h}_{7}}{h_{7}}\right)^{2} \text { by }(5.5) \\
& =I\left(\frac{\dot{h}_{7}}{h_{7}}\right)^{2} \text { by }(3.3) \text { and }(3.9 \mathrm{e}) \\
& =I \dot{\psi} \dot{\varphi}^{2}-\frac{f_{1}(R) \dot{f}_{2}(T}{\chi} I^{2} \ddot{\psi} \dot{\varphi}^{2} \quad \text { by }(5.6) \tag{5.8}
\end{align*}
$$

We attempt to express the components of T_{j}^{i} in (3.7) in terms of T_{4}^{4} by using (5.5), (5.6) and (5.8) as follows

$$
\begin{align*}
& T_{4}^{4}=\frac{1}{2} I \dot{\psi} \dot{\varphi}^{2}-\frac{1}{2} \frac{f_{1}(R) \dot{f}_{2}(T}{\chi} I^{2} \ddot{\psi} \dot{\varphi}^{2}-\frac{1}{2} \psi \dot{\varphi}^{2} \tag{5.9a}\\
& T_{1}^{1}=-T_{4}^{4}-\frac{f_{1}(R) \dot{f}_{2}(T)}{\chi} I \ddot{\psi} \dot{\varphi}^{2} \frac{\alpha^{2} V_{1}^{2}}{A^{2}} \tag{5.9b}\\
& T_{2}^{1}=-\frac{f_{1}(R) \dot{f}_{2}(T)}{\chi} I \ddot{\psi} \dot{\varphi}^{2} \frac{\alpha V_{1} V_{2}}{A^{2}} \tag{5.9c}\\
& T_{3}^{1}=-\frac{f_{1}(R) \dot{f}_{2}(T)}{\chi} I \ddot{\psi} \dot{\varphi}^{2} \frac{\alpha V_{1} V_{3}}{A^{2}} \tag{5.9d}\\
& T_{4}^{1}=0 \tag{5.9e}\\
& T_{2}^{2}=-T_{4}^{4}-\frac{f_{1}(R) \dot{f}_{2}(T)}{\chi} I \ddot{\psi} \dot{\varphi}^{2} \frac{V_{2}^{2}}{B^{2}} e^{2 m x} \tag{5.9f}\\
& T_{3}^{2}=-\frac{f_{1}(R) \dot{f}_{2}(T)}{\chi} I \ddot{\psi} \dot{\varphi}^{2} \frac{V_{2} V_{3}}{B^{2}} e^{2 m x} \tag{5.9~g}\\
& T_{3}^{3}=-T_{4}^{4}-\frac{f_{1}(R) \dot{f}_{2}(T)}{\chi} I \ddot{\psi} \dot{\varphi}^{2} \frac{V_{3}^{2}}{C^{2}} \tag{5.9h}\\
& T=(\psi-I \dot{\psi}) \dot{\varphi}^{2} \tag{5.9i}
\end{align*}
$$

We consider the non-vanishing components of Einstein tensor $G_{1}^{1}, G_{2}^{2}, G_{3}^{3}$ from (5.2)

$$
\begin{align*}
& \frac{\ddot{B}}{B}+\frac{\ddot{C}}{C}+\frac{\dot{B} \dot{C}}{B C}=\frac{1}{A^{2}} \frac{\ddot{f}_{2}(T)}{f_{2}(T)}\left(\frac{d T}{d x}\right)^{2}+\frac{1}{A^{2}} \frac{\dot{f}_{2}(T)}{f_{2}(T)} \frac{d^{2} T}{d x^{2}}+\frac{\dot{A}}{A}\left[\frac{\dot{f}_{1}(R)}{\dot{f}_{1}(R)} \frac{d R}{d t}+\frac{\dot{f}_{2}(T)}{f_{2}(T)} \frac{d T}{d t}\right]-\frac{1}{6}\left[R+\frac{f_{1}(R)}{\left.\dot{f_{1}(R)}\right]}\right] \\
& +\frac{\chi}{f_{1}(R) f_{2}(T)}\left[T_{1}^{1}-\frac{1}{3} T\right]+\frac{1}{3} \frac{f_{1}(R) \dot{f}_{2}(T)}{f_{1}(R) f_{2}(T)}[T+\theta]-\frac{f_{1}(R) \dot{f}_{2}(T)}{f_{1}(R) f_{2}(T)}\left[T_{1}^{1}+\theta_{1}^{1}\right] \tag{5.10a}\\
& \frac{\ddot{A}}{A}+\frac{\ddot{C}}{C}+\frac{\dot{A} \dot{C}}{A C}=\frac{m}{A^{2}} \frac{\dot{f_{2}}(T)}{f_{2}(T)} \frac{d T}{d x}+\frac{\dot{B}}{B}\left[\frac{\ddot{f}_{1}(R)}{\dot{f_{1}}(R)} \frac{d R}{d t}+\frac{\dot{f}_{2}(T)}{f_{2}(T)} \frac{d T}{d t}\right]-\frac{1}{6}\left[R+\frac{f_{1}(R)}{\dot{f}_{1}(R)}\right] \\
& +\frac{\chi}{\dot{f}_{1}(R) f_{2}(T)}\left[T_{2}^{2}-\frac{1}{3} T\right]+\frac{1}{3} \frac{f_{1}(R) \dot{f}_{2}(T)}{\dot{f}_{1}(R) f_{2}(T)}[T+\theta]-\frac{f_{1}(R) \dot{f}_{2}(T)}{\dot{f}_{1}(R) f_{2}(T)}\left[T_{2}^{2}+\theta_{2}^{2}\right] \tag{5.10b}\\
& -\frac{m^{2}}{A^{2}}+\frac{\ddot{A}}{A}+\frac{\ddot{B}}{B}+\frac{\dot{A} \dot{B}}{A B}=\frac{\dot{C}}{c}\left[\frac{\ddot{f}_{1}(R)}{\dot{f}_{1}(R)} \frac{d R}{d t}+\frac{\dot{f_{2}}(T)}{f_{2}(T)} \frac{d T}{d t}\right]-\frac{1}{6}\left[R+\frac{f_{1}(R)}{\dot{f}_{1}(R)}\right]+\frac{\chi}{f_{1}(R) f_{2}(T)}\left[T_{3}^{3}-\frac{1}{3} T\right] \\
& +\frac{1}{3} \frac{f_{1}(R) \dot{f}_{2}(T)}{\stackrel{f}{1}_{1}(R) f_{2}(T)}[T+\theta]-\frac{f_{1}(R) \dot{f}_{2}(T)}{\dot{f}_{1}(R) f_{2}(T)}\left[T_{3}^{3}+\theta_{3}^{3}\right] \tag{5.10c}
\end{align*}
$$

Subtracting (5.10b) from (5.10a), (5.10c) from (5.10b) and (5.10a) from (5.10c) we obtain

$$
\begin{align*}
& \frac{\ddot{B}}{B}-\frac{\ddot{A}}{A}+\frac{\dot{C}}{C}\left[\frac{\dot{B}}{B}-\frac{\dot{A}}{A}\right]+\left(\frac{\dot{B}}{B}-\frac{\dot{A}}{A}\right)\left[\frac{\ddot{f}_{1}(R)}{\dot{f}_{1}(R)} \frac{d R}{d t}+\frac{\dot{f_{2}}(T)}{f_{2}(T)} \frac{d T}{d t}\right] \\
& =\frac{1}{A^{2}}\left[\frac{\dddot{f_{2}}(T)}{f_{2}(T)}\left(\frac{d T}{d x}\right)^{2}+\frac{\dot{f}_{2}(T)}{f_{2}(T)} \frac{d^{2} T}{d x^{2}}-m \frac{\dot{f}_{2}(T)}{f_{2}(T)} \frac{d T}{d x}\right]+\frac{\chi}{f_{1}(R)-2_{2}(T)}\left[T_{1}^{1}-T_{2}^{2}\right] \\
& +\frac{f_{1}(R) \dot{f}_{2}(T)}{\dot{f}_{1}(R) f_{2}(T)}\left[\left(T_{2}^{2}+\theta_{2}^{2}\right)-\left(T_{1}^{1}+\theta_{1}^{1}\right)\right] \tag{5.11a}\\
& \frac{\ddot{C}}{C}-\frac{\ddot{B}}{B}+\frac{\dot{A}}{A}\left[\frac{\dot{C}}{C}-\frac{\dot{B}}{B}\right]+\left(\frac{\dot{C}}{C}-\frac{\dot{B}}{B}\right)\left[\frac{\tilde{f}_{1}(R)}{\dot{f}_{1}(R)} \frac{d R}{d t}+\frac{\dot{\mathrm{f}}_{2}(T)}{f_{2}(T)} \frac{d T}{d t}\right] \\
& =-\frac{m^{2}}{A^{2}}+\frac{m}{A^{2}} \frac{\dot{f}_{2}(T)}{f_{2}(T)} \frac{d T}{d x}+\frac{\chi}{f_{1}(R) f_{2}(T)}\left[T_{2}^{2}-T_{3}^{3}\right]+\frac{f_{1}(R) \hat{f}_{2}(T)}{f_{1}(R) f_{2}(T)}\left[\left(T_{3}^{3}+\theta_{3}^{3}\right)-\left(T_{2}^{2}+\theta_{2}^{2}\right)\right] \tag{5.11b}\\
& \frac{\ddot{A}}{A}-\frac{\ddot{C}}{C}+\frac{\dot{B}}{B}\left[\frac{\dot{d}}{A}-\frac{\dot{C}}{C}\right]+\left(\frac{\dot{A}}{A}-\frac{\dot{C}}{C}\right)\left[\frac{\ddot{f}_{1}(R)}{\dot{f}_{1}(R)} \frac{d R}{d t}+\frac{\dot{f}_{2}(T)}{f_{2}(T)} \frac{d T}{d t}\right] \\
& =\frac{m^{2}}{A^{2}}-\frac{1}{A^{2}} \frac{\dddot{f}_{2}(T)}{f_{2}(T)}\left(\frac{d T}{d x}\right)^{2}-\frac{1}{A^{2}} \frac{\dot{f}_{2}(T)}{f_{2}(T)} \frac{d^{2} T}{d x^{2}}+\frac{\chi}{\dot{f}_{1}(R) f_{2}(T)}\left[T_{3}^{3}-T_{1}^{1}\right] \\
& +\frac{f_{1}(R) \dot{f}_{2}(T)}{\dot{f}_{1}(R) f_{2}(T)}\left[\left(T_{1}^{1}+\theta_{1}^{1}\right)-\left(T_{3}^{3}+\theta_{3}^{3}\right)\right] \tag{5.11c}
\end{align*}
$$

By using (5.9) and (3.8), the equations (5.11) reduces to

$$
\begin{align*}
& \frac{\ddot{C}}{C}-\frac{\ddot{B}}{B}+\frac{\dot{A}}{A}\left[\frac{\dot{C}}{C}-\frac{\dot{B}}{B}\right]+\left(\frac{\dot{C}}{C}-\frac{\dot{B}}{B}\right)\left[\frac{\ddot{f}_{1}(R)}{\ddot{f}_{1}(R)} \frac{d R}{d t}+\frac{\dot{f}_{2}(T)}{f_{2}(T)} \frac{d T}{d t}\right]=-\frac{m^{2}}{A^{2}}+\frac{m}{A^{2}} \frac{\dot{f}_{2}(T)}{f_{2}(T)} \frac{d T}{d x} \tag{5.12b}\\
& \left.\frac{\ddot{A}}{A}-\frac{\ddot{C}}{C}+\frac{\dot{B}}{B}\left[\frac{\dot{A}}{A}-\frac{\dot{C}}{C}\right]+\left(\frac{\dot{A}}{A}-\frac{\dot{C}}{C}\right)\left[\frac{\ddot{f}_{1}(R)}{\ddot{f}_{1}(R)} \frac{d R}{d t}+\frac{\dot{f}_{2}(T)}{f_{2}(T)} \frac{d T}{d t}\right]=\frac{m^{2}}{A^{2}}-\frac{1}{A^{2}} \frac{\ddot{f}_{2}(T)}{f_{2}(T)} \frac{d T}{d x}\right)^{2}-\frac{1}{A^{2}} \frac{\dot{f}_{2}(T)}{f_{2}(T)} \frac{d^{2} T}{d x^{2}} \tag{5.12c}
\end{align*}
$$

With the help of (5.5) we can write the equations (3.9) as

$$
\begin{align*}
& \left(\frac{\dot{\mathrm{h}}_{7}}{\mathrm{~h}_{7}}\right)^{\cdot}+\frac{\dot{\mathrm{h}}_{7}{ }^{2}}{\mathrm{~h}_{7}{ }^{2}}+\frac{\dot{\mathrm{h}}_{7}}{\mathrm{~h}_{7}}\left[\frac{\dot{\mathrm{C}}}{\mathrm{C}}+\frac{\dot{\mathrm{B}}}{\mathrm{~B}}-\frac{\dot{\mathrm{A}}}{\mathrm{~A}}\right]=\dot{\varphi} \dot{\varphi}^{2} \tag{5.13a}\\
& \left(\frac{\dot{\mathrm{~h}}_{7}}{\mathrm{~h}_{7}}\right)^{\cdot}+\frac{\dot{\mathrm{h}}_{7}^{2}}{\mathrm{~h}_{7}{ }^{2}}+\frac{\dot{\mathrm{h}}_{7}}{\mathrm{~h}_{7}}\left[\frac{\dot{\mathrm{~A}}}{\mathrm{~A}}+\frac{\dot{\mathrm{C}}}{\mathrm{C}}-\frac{\dot{\mathrm{B}}}{\mathrm{~B}}\right]=\dot{\psi} \dot{\varphi}^{2} \tag{5.13b}\\
& \left(\frac{\dot{\mathrm{~h}}_{7}}{\mathrm{~h}_{7}}\right)^{\cdot}+\frac{\dot{\mathrm{h}}_{7}^{2}}{\mathrm{~h}_{7}{ }^{2}}+\frac{\dot{\mathrm{h}}_{7}}{\mathrm{~h}_{7}}\left[\frac{\dot{\mathrm{~B}}}{\mathrm{~B}}+\frac{\dot{\mathrm{A}}}{\mathrm{~A}}-\frac{\dot{\mathrm{C}}}{\mathrm{C}}\right]=\dot{\psi} \dot{\varphi}^{2} \tag{5.13c}
\end{align*}
$$

These equations further imply that

$$
\begin{align*}
& \frac{\dot{C}}{C}+\frac{\dot{B}}{B}-\frac{\dot{A}}{A}=\frac{\dot{A}}{A}+\frac{\dot{C}}{C}-\frac{\dot{B}}{B}=\frac{\dot{B}}{B}+\frac{\dot{A}}{A}-\frac{\dot{C}}{C} \\
\text { or } \quad & \frac{\dot{A}}{A}=\frac{\dot{B}}{B}=\frac{\dot{C}}{C} \tag{5.14}
\end{align*}
$$

Upon integration the equation (5.14) yields

$$
\begin{equation*}
A=m_{9} B, \quad B=m_{10} C, \quad C=m_{11} A \tag{5.15}
\end{equation*}
$$

where m's are constants of integration.
We observe that A is scalar multiple of B, B is scalar multiple of C and C is scalar multiple of A
By using (514) the R. H. S. of (5.12) vanishes for all t
Therefore for solving differential equation of A, B, C with respect to t, we consider the L.H.S. of equations (5.12)

$$
\begin{align*}
& \frac{\ddot{B}}{B}-\frac{\ddot{A}}{A}+\frac{\dot{C}}{C}\left[\frac{\dot{B}}{B}-\frac{\dot{A}}{A}\right]+\left(\frac{\dot{B}}{B}-\frac{\dot{A}}{A}\right)\left[\frac{\ddot{f}_{1}(R)}{f_{1}(R)} \frac{d R}{d t}+\frac{\dot{f}_{2}(T)}{f_{2}(T)} \frac{d T}{d t}\right]=0 \tag{5.16a}\\
& \frac{\ddot{C}}{C}-\frac{\ddot{B}}{B}+\frac{\dot{A}}{A}\left[\frac{\dot{C}}{C}-\frac{\dot{B}}{B}\right]+\left(\frac{\dot{C}}{C}-\frac{\dot{B}}{B}\right)\left[\frac{\ddot{f}_{1}(R)}{\left.\frac{d R}{f_{1}(R)} \frac{d r}{d t}+\frac{\dot{f}_{2}(T)}{f_{2}(T)} \frac{d}{d t}\right]=0}\right. \tag{5.16b}\\
& \frac{\ddot{A}}{A}-\frac{\ddot{C}}{C}+\frac{\dot{B}}{B}\left[\frac{\dot{A}}{A}-\frac{\dot{C}}{C}\right]+\left(\frac{\dot{A}}{A}-\frac{\dot{C}}{C}\right)\left[\frac{\ddot{f}_{1}(R)}{f_{1}(R)} \frac{d R}{d t}+\frac{\dot{f}_{2}(T)}{f_{2}(T)} \frac{d T}{d t}\right]=0 \tag{5.16c}
\end{align*}
$$

Integrating (5.16) we obtain

$$
\begin{align*}
& \frac{B}{A}=m_{13} \exp \left\{\mathrm{~m}_{12} \int \frac{1}{\mathrm{ABCf}_{1}(\mathrm{R}) \mathrm{f}_{2}(\mathrm{~T})} \mathrm{dt}\right\} \tag{5.17a}\\
& \frac{\mathrm{A}}{\mathrm{C}}=\mathrm{m}_{15} \exp \left\{\mathrm{~m}_{14} \int \frac{1}{\mathrm{ABC} \dot{f}_{1}(\mathrm{R}) \mathrm{f}_{2}(\mathrm{~T})} \mathrm{dt}\right\} \tag{5.17b}\\
& \frac{C}{B}=m_{17} \exp \left\{\mathrm{~m}_{16} \int \frac{1}{\mathrm{ABC} \dot{f}_{1}(\mathrm{R}) \mathrm{f}_{2}(\mathrm{~T})} \mathrm{dt}\right\} \tag{5.17c}
\end{align*}
$$

where m's are constants of integration, such that

$$
\mathrm{m}_{13} \mathrm{~m}_{15} \mathrm{~m}_{17}=1 \text { and } \mathrm{m}_{12}+\mathrm{m}_{14}+\mathrm{m}_{16}=0
$$

From (5.17) we can express explicitly the values of A, B, C as

$$
\begin{align*}
& A=(A B C)^{\frac{1}{3}} m_{18} \exp \left\{m_{19} \int \frac{1}{A B C \dot{f}_{1}(\mathrm{R}) \mathrm{f}_{2}(\mathrm{~T})} \mathrm{dt}\right\} \tag{5.18a}\\
& C=(\mathrm{ABC})^{\frac{1}{3}} m_{20} \exp \left\{\mathrm{~m}_{21} \int \frac{1}{\mathrm{ABC} \mathrm{f}_{1}(\mathrm{R}) \mathrm{f}_{2}(\mathrm{~T})} \mathrm{dt}\right\} \tag{5.18b}
\end{align*}
$$

$$
\begin{equation*}
B=(A B C)^{\frac{1}{3}} m_{22} \exp \left\{m_{23} \int \frac{1}{A B C \dot{f}_{1}(R) f_{2}(T)} d t\right\} \tag{5.18c}
\end{equation*}
$$

where m's are constants of integration.
Adjusting the constants in (4.17) and (5.18), the line element (3.1) assumes an isotropic form and hence we generalize the result in the form of following theorem.

Theorem 1: In $f(\mathrm{R}, \mathrm{T})$ theory of gravity, the Bianchi type III space-time filled with scalar field coupled with electromagnetic field, admits isotropy for the functional form $f(R, T)=f_{1}(R)+\lambda f_{2}(T)$ and $f(R, T)=f_{1}(R) f_{2}(T)$.

Inserting (5.14) in (5.13), we get

$$
\begin{equation*}
\left(\frac{\dot{h}_{7}}{h_{7}}\right)^{\cdot}+\frac{\dot{h}_{7}^{2}}{h_{7}^{2}}+\frac{\dot{h}_{7}}{h_{7}}\left[\frac{\dot{A}}{A}\right]=\dot{\psi} \dot{\varphi}^{2} \tag{5.19}
\end{equation*}
$$

But from (5.6) we have

$$
\begin{equation*}
\dot{\psi} \dot{\varphi}^{2}=\frac{\dot{h}_{7}^{2}}{h_{7}^{2}}+\frac{f_{1}(R) \dot{\dot{z}}_{2}(T)}{\chi} I \ddot{\psi} \dot{\varphi}^{2} \tag{5.20}
\end{equation*}
$$

Inserting (5.20) in (5.19), we get

$$
\begin{equation*}
\left(\frac{\dot{h}_{7}}{h_{7}}\right)^{\cdot}+\frac{\dot{h}_{7}}{h_{7}}\left[\frac{\dot{d}}{A}\right]=\frac{\lambda}{\chi} I \ddot{\psi} \dot{\varphi}^{2} \tag{5.21}
\end{equation*}
$$

Confining to the linearity of the function ψ i.e. $\ddot{\psi}=0$ or $\psi=m_{24} I+m_{25}$ then (5.21) has solution

$$
\begin{equation*}
h_{7}=m_{27} \exp \left\{m_{26} \int \frac{1}{A} d t\right\} \tag{5.22}
\end{equation*}
$$

With the help of (5.22), the equations (5.7) convert in to

$$
\begin{align*}
& V_{1}=m_{28} \exp \left\{m_{26} \int \frac{1}{A} d t\right\} \tag{5.23a}\\
& V_{2}=m_{29} \exp \left\{m_{26} \int \frac{1}{A} d t\right\} \tag{5.23b}\\
& V_{3}=m_{30} \exp \left\{m_{26} \int \frac{1}{A} d t\right\} \tag{5.23c}
\end{align*}
$$

where m 's are constants of integration.
Adjusting the constants in (4.22) and (5.23) the vector potential assume the following form

$$
V_{i}=\left[V_{1}, V_{1}, V_{1}, 0\right]
$$

Hence we generalize the result in the form of the following theorem.
Theorem 2: : $\operatorname{In} f(R, T)$ theory of gravity, the Bianchi type III space-time filled with scalar field coupled with electromagnetic field, admits the vector potential $\mathrm{V}_{\mathrm{i}}=\left[\mathrm{V}_{1}, \mathrm{~V}_{1}, \mathrm{~V}_{1}, 0\right]$ for the functional form $f(R, T)=f_{1}(R)+\lambda f_{2}(T)$ and $f(R, T)=f_{1}(R) f_{2}(T)$.

6. Sub case $f(R, T)=f(R)$

In this case we follow the notations
$f(R, T)=f(R), \quad f_{R}(R, T)=\frac{\partial f(R, T)}{\partial R}=\dot{f}(R), \quad f_{T}(R, T)=\frac{\partial f(R, T)}{\partial T}=0$
In this case the field equations (1.8) reduces to

$$
\begin{equation*}
G_{j}^{i}=\frac{1}{\dot{f}(R)}\left[g^{i m} \nabla_{m} \nabla_{j} \dot{f}(R)\right]-\frac{1}{6 \dot{f}(R)}[\dot{f}(R) R+f(R)] g_{j}^{i}+\frac{\chi}{\dot{f}(R)}\left[T_{j}^{i}-\frac{1}{3} T g_{j}^{i}\right] \tag{6.1}
\end{equation*}
$$

The computation for this case easily follows from those of the earlier case (section 4) by mere substitution of $f_{1}(R)=f(R), \lambda=0$ or $f_{2}(T)=0$

We get the result as follows

$$
\begin{align*}
& A=(A B C)^{\frac{1}{3}} k_{45} \exp \left\{k_{41} \int \frac{1}{A B C \dot{f}_{1}(R)} d t\right\} \tag{6.2a}\\
& B=(A B C)^{\frac{1}{3}} k_{46} \exp \left\{k_{43} \int \frac{1}{A B C \dot{f}_{1}(R)} d t\right\} \tag{6.2b}\\
& C=(A B C)^{\frac{1}{3}} k_{47} \exp \left\{k_{41} \int \frac{1}{A B C \dot{f_{1}(R)}} d t\right\} \tag{6.2c}
\end{align*}
$$

where $\mathrm{k}^{\prime} \mathrm{s}$ are constant of integration.

$$
\begin{align*}
& \mathrm{V}_{1}=\mathrm{k}_{50} \exp \left\{\mathrm{k}_{48} \int \frac{1}{\mathrm{~A}} \mathrm{dt}\right\} \tag{6.3a}\\
& \mathrm{V}_{2}=\mathrm{k}_{51} \exp \left\{\mathrm{k}_{48} \int \frac{1}{\mathrm{~A}} \mathrm{dt}\right\} \tag{6.3b}\\
& \mathrm{V}_{3}=\mathrm{k}_{52} \exp \left\{\mathrm{k}_{48} \int \frac{1}{\mathrm{~A}} \mathrm{dt}\right\} \tag{6.3c}
\end{align*}
$$

where k 's are constant of integration.
From section 4, 5 and 6 we observe that the result remain intact for $f(R, T)=f_{1}(R)+\lambda f_{2}(T)$, $f(R, T)=f_{1}(R) f_{2}(T)$ and $f(R, T)=f(R)$ differ in constant of integration only. Hence the equations (6.2) and (6.3) admit the theorem 1 and 2.

7. Sub case $f(R, T)=R+\lambda T$

In this case we follow the notations

$$
f_{R}(R, T)=\frac{\partial f(R, T)}{\partial R}=1, \quad f_{T}(R, T)=\frac{\partial f(R, T)}{\partial T}=\lambda
$$

The field equation (1.5) reduces to

$$
\begin{equation*}
G_{j}^{i}=\chi T_{j}^{i}-\lambda\left[T_{j}^{i}+\theta_{j}^{i}\right]+\frac{\lambda}{2} T \delta_{j}^{i} \tag{7.1}
\end{equation*}
$$

The computation of this case follows from section $4, f(R, T)=f_{1}(R)+\lambda f_{2}(T)$ by taking $f_{1}(R)=R$ and $f_{2}(T)=T$

We get the result as follows

$$
\begin{equation*}
\mathrm{A}=(\mathrm{ABC})^{\frac{1}{3}} \mathrm{l}_{17} \exp \left\{\mathrm{l}_{13} \int \frac{1}{\mathrm{ABC}} \mathrm{dt}\right\} \tag{7.2a}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{B}=(\mathrm{ABC})^{\frac{1}{3}} \mathrm{l}_{18} \exp \left\{\mathrm{l}_{15} \int \frac{1}{\mathrm{ABC}} \mathrm{dt}\right\} \tag{7.2b}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{C}=(\mathrm{ABC})^{\frac{1}{3}} \mathrm{l}_{19} \exp \left\{\mathrm{l}_{13} \int \frac{1}{\mathrm{ABC}} \mathrm{dt}\right\} \tag{7.2c}
\end{equation*}
$$

wherel'sare constants of integration.

$$
\begin{align*}
& \mathrm{V}_{1}=\mathrm{l}_{24} \exp \left\{\mathrm{l}_{22} \int \frac{1}{\mathrm{~A}} \mathrm{dt}\right\} \tag{7.3a}\\
& \mathrm{V}_{2}=\mathrm{l}_{25} \exp \left\{\mathrm{l}_{22} \int \frac{1}{\mathrm{~A}} \mathrm{dt}\right\} \tag{7.3b}\\
& \mathrm{V}_{3}=\mathrm{l}_{26} \exp \left\{\mathrm{l}_{22} \int \frac{1}{\mathrm{~A}} \mathrm{dt}\right\} \tag{7.3c}
\end{align*}
$$

where l's are constant of integration.
From section 4, 5 and 7 we observe that the result remain intact for $f(R, T)=f_{1}(R)+\lambda f_{2}(T)$, $\mathrm{f}(R, T)=f_{1}(R) f_{2}(T)$ and $f(R, T)=R+\lambda T$, differ in constant of integration only. Hence the equations (7.2) and (7.3) admit the theorem 1 and 2.
8. Sub case $\boldsymbol{f}(\boldsymbol{R}, \boldsymbol{T})=\boldsymbol{f}(\boldsymbol{R})=\boldsymbol{R}$

In this case $\quad f(R, T)=f(R)=R, \quad f_{R}(R, T)=1, \quad f_{T}(R, T)=0$
Then field equation (1.5) reduces to

$$
\begin{equation*}
\mathrm{G}_{\mathrm{j}}^{\mathrm{i}}=\chi \mathrm{T}_{\mathrm{j}}^{\mathrm{i}} \tag{8.1}
\end{equation*}
$$

The computation for this case easily follows from those of the earlier case section 7 by mere substitution of $\lambda=0$ we get the result as follows

$$
\begin{align*}
& A=(A B C)^{\frac{1}{3}} l_{43} \exp \left\{l_{39} \int \frac{1}{\mathrm{ABC}} \mathrm{dt}\right\} \tag{8.2a}\\
& \mathrm{B}=(\mathrm{ABC})^{\frac{1}{3}} \mathrm{l}_{44} \exp \left\{\mathrm{l}_{41} \int \frac{1}{\mathrm{ABC}} \mathrm{dt}\right\} \tag{8.2b}\\
& \mathrm{C}=(\mathrm{ABC})^{\frac{1}{3}} l_{45} \exp \left\{\mathrm{l}_{39} \int \frac{1}{\mathrm{ABC}} \mathrm{dt}\right\} \tag{8.2c}
\end{align*}
$$

where l's are constants of integration.

$$
\begin{equation*}
V_{1}=l_{48} \exp \left\{l_{46} \int \frac{1}{A} d t\right\} \tag{8.3a}
\end{equation*}
$$

$$
\begin{align*}
& V_{2}=l_{49} \exp \left\{l_{46} \int \frac{1}{A} d t\right\} \tag{8.3b}\\
& V_{3}=l_{50} \exp \left\{l_{46} \int \frac{1}{A} d t\right\} \tag{8.3c}
\end{align*}
$$

where l's are constant of integration.
From section 4, 5 and 8 we observe that the result remain intact for $f(R, T)=f_{1}(R)+\lambda f_{2}(T)$, $f(R, T)=f_{1}(R) f_{2}(T)$ and $f(R, T)=R$, differ in constant of integration only. Hence the equations (8.2) and (8.3) admit the theorem 1 and 2.

9. Consideration of particular case $\boldsymbol{f}(\boldsymbol{R}, \boldsymbol{T})=\boldsymbol{R} \boldsymbol{T}$

In this case $\quad f_{R}(R, T)=T, \quad f_{T}(R, T)=R$
Then the field equation (1.8) reduces to

$$
\begin{equation*}
G_{j}^{i}=\frac{1}{T}\left[g^{i m} \nabla_{m} \nabla_{j} T\right]-\frac{R}{3} g_{j}^{i}+\frac{\chi}{T}\left[T_{j}^{i}-\frac{1}{3} T g_{j}^{i}\right]+\frac{1}{3} \frac{R}{T}[T+\theta] g_{j}^{i}-\frac{R}{T}\left[T_{j}^{i}+\theta_{j}^{i}\right] \tag{9.1}
\end{equation*}
$$

The computation for this case easily follows from those of the earlier case, section 5, by mere substitution of $f_{1}(R)=R$ and $f_{2}(T)=T$

We get the result as follows

$$
\begin{align*}
& A=(A B C)^{\frac{1}{3}} \mathrm{n}_{13} \exp \left\{\mathrm{n}_{14} \int \frac{1}{\mathrm{ABCT}} \mathrm{dt}\right\} \tag{9.2a}\\
& B=(\mathrm{ABC})^{\frac{1}{3}} \mathrm{n}_{15} \exp \left\{\mathrm{n}_{16} \int \frac{1}{\mathrm{ABCT}} \mathrm{dt}\right\} \tag{9.2b}\\
& C=(\mathrm{ABC})^{\frac{1}{3}} \mathrm{n}_{17} \exp \left\{\mathrm{n}_{18} \int \frac{1}{\mathrm{ABC} \mathrm{\dot{f}}(\mathrm{R}) \mathrm{f}_{2}(\mathrm{~T})} \mathrm{dt}\right\} \tag{9.2c}
\end{align*}
$$

where n 's are constants of integration.

$$
\begin{align*}
& \mathrm{V}_{1}=\mathrm{n}_{23} \exp \left\{\mathrm{n}_{21} \int \frac{1}{\mathrm{~A}} \mathrm{dt}\right\} \tag{9.3a}\\
& \mathrm{V}_{2}=\mathrm{n}_{24} \exp \left\{\mathrm{n}_{21} \int \frac{1}{\mathrm{~A}} \mathrm{dt}\right\} \tag{9.3b}\\
& \mathrm{V}_{3}=\mathrm{n}_{25} \exp \left\{\mathrm{n}_{21} \int \frac{1}{\mathrm{~A}} \mathrm{dt}\right\} \tag{79.3c}
\end{align*}
$$

where n 's are constants of integration.

From section 4, 5 and 9 we observe that the result remain intact for $f(R, T)=f_{1}(R)+\lambda f_{2}(T)$, $f(R, T)=f_{1}(R) f_{2}(T)$ and $f(R, T)=R T$, differ in constant of integration only. Hence the equations (9.2) and (9.3) admit the theorem 1 and 2.

10. Conclusion

i) In the present paper we have considered sub cases of $f(R, T)$ theory of gravity models $\mathrm{f}(\mathrm{R}, \mathrm{T})=\mathrm{f}_{1}(\mathrm{R})+\lambda \mathrm{f}_{2}(\mathrm{~T}), \mathrm{f}(\mathrm{R}, \mathrm{T})=\mathrm{f}(\mathrm{R}), \mathrm{f}(\mathrm{R}, \mathrm{T})=\mathrm{R}+\lambda \mathrm{T}, \mathrm{f}(\mathrm{R}, \mathrm{T})=\mathrm{f}_{1}(\mathrm{R}) \mathrm{f}_{2}(\mathrm{~T}), \mathrm{f}(\mathrm{R}, \mathrm{T})=\mathrm{RT}$ in Bianchi type III metric. We have derived the gravitational field equations corresponding to the general and particular cases of $f(R, T)$ theory of gravity.
ii) It is observed that, even though the cases of $f(R, T)$ theory are distinct, the convergent, nonsingular, isotropic solutions can be evolved in each case along with the components vector potential.
iii) From finding of the $f(R, T)$ andf(R) theory, general and particular cases, in this paper we believe firmly that the results of $f(R, T)$ and $f(R)$ depends on only R and not on T.
iv) From different cases of $f(R, T)$ we observe that the results remain intact only differ in constants of integration.

Received September 19, 2016; Accepted October 9, 2016

References

[1] BijanSaha, Int. Theor. Phys. DOI 10.1007/s 10773-015-2615-1, 31 March 2015
[2] Clocchiatti A et al. (High Z S N Search Collaboration); Astrophys. J., 642,1,2006
[3] Harko T, Lobo F S N, Nojiri S, Odintsov S D: Phys. Rev. D 84,024020 (2011)
[4] MyrzakulovRatbay,ErtanGudekli, Razina Olga and TsybaPyotr : Int. J. Of Maths.Computational, Natural and Physical Engineering, 9, 2, 2015
[5] Nojiri S and Odintsov S D : Phys. Rev. D 68, 123512 (2003).
[6] Perlmeter S et al. (Supernova Cosmological Project Collaboration); Nature 391, 51, 1998
[7] Perlmutter S et al. Astrophys. J., 598,102, 2003
[8] Rybakov Yu. P, Shikin G N and SahaB : Int. J. Theor. Phys. 36, 6,pp. 1475-1494, 1997
[9] Riess A G et al. (Supernova Search Team Collaboration); Astron. J., 116, 1009, 1998
[10] Riess A G et al. (Supernova Search Team Collaboration); Astrophys. J., 607, 665, 2004
[11] Tonry J L et al. (Supernova Search Team Collaboration); Astrophys. J., 594,1,2003

[^0]: *Correspondence Author: D. T. Solanke, Sudhakar Naik and Umashankar Khetan College, Akola 444004, India.
 E-mail: solanke_dattarao@rediffmail.com

