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Article

Do experiment and the correspondence principle
oblige revision of relativistic quantum theory?

Steven Kenneth Kauffmann1

Abstract

Recent preliminary data gathered by the Fermilab MINOS Collaboration suggest with 95% con-
fidence that the mass of the muon neutrino differs from that of its antineutrino partner, which
contradicts the entrenched relativistic quantum theory notion that a free antiparticle is a negative-
energy free particle compelled to travel backwards in time. Also a discrepancy of about five standard
deviations in the value of the proton charge radius recently obtained from muonic hydrogen versus
that previously obtained from electronic hydrogen casts doubt on the calculation of the dominant
relativistic QED contributions to the effects that are actually measured (e.g., the Lamb shift): these
QED contributions dominate proton charge radius contributions less in muonic hydrogen than in
electronic hydrogen. The negative-energy “free particles” of entrenched relativistic quantum theory
are well-known features of the Klein-Gordon and Dirac equations, which are shown to have many
other unphysical features as well. The correspondence principle for relativistic particles is incom-
patible with these two equations, produces no unphysical features and implies only positive energies
for free particles, which eliminates the very basis of the entrenched notion of antiparticles, as well
as of the CPT theorem. This principle thus requires antiparticles to arise from charge conjugation
(or more generally CP) invariance, whose known breaking is naturally expected to produce mass
splitting between particle and antiparticle, in consonance with the preliminary MINOS data. It also
requires revamping of relativistic QED, which is in accord with the doubt cast on it by the proton
charge radius results, and implies that QED is nonlocal, i.e. has no Hamiltonian density.

Introduction

Recent data gathered by two very different experiments have cast a shadow of doubt over the validity of
relativistic quantum precepts that have become well-entrenched over almost nine decades. Preliminary
data from the Fermilab MINOS Collaboration presented on June 14, 2010 at the Neutrino 2010 conference
in Athens, Greece suggest with 95% confidence that the muon neutrino does not have the same mass as
the muon antineutrino [1, 2]. If the symmetry which relates particle to antiparticle were deemed to be a
multi-particle one of the overlying field theory, as is the symmetry which relates the two members of an
isospin doublet, such a mass splitting between neutrino and antineutrino would be no more remarkable
than is the mass splitting between proton and neutron: after all, just as electromagnetism breaks isospin
symmetry, there is a physical agency which breaks particle-antiparticle symmetry—that is clear from
particle domination of the composition of the visible universe.

The issue, however, is that the entrenched approach to relativistic quantum theory has it that the
relation between particle and antiparticle is not a mere multi-particle symmetry of the overlying field
theory, but that particle and antiparticle are in fact two members of the very same species : a free
antiparticle is deemed by entrenched theory to be a free negative-energy particle which, due to its
negative energy, is somehow obliged to travel backwards in time—although no deduction from established
physics which justifies this astounding contention of time-flow reversal for negative-energy free particles
is proffered. This particular (and certainly peculiar) “species identity” of particle with antiparticle in
entrenched theory precludes their masses from differing at all, and it as well lies at the very heart of the
“celebrated” CPT theorem.

The above-noted negative-energy free particles of course arise from the ostensible “quantum rela-
tivistic” Klein-Gordon and Dirac equations of entrenched theory. These negative energies have no lower
bound, and therefore at first glance comprise a source of severe theoretical physics embarrassment for the
Klein-Gordon and Dirac free-particle equations—not to mention that free particles of negative energy
are not observed. Putting the Klein-Gordon and Dirac negative-energy free particles “at the service” of a
phenomenon that actually is observed, namely antiparticles, by arbitrarily imposing on them the mind-
boggling requirement that they also travel backwards in time turned out to be astonishingly well-received
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by the physics community. This almost certainly was due to great reluctance on the part of this commu-
nity to discard the Klein-Gordon and Dirac equations, notwithstanding that the negative free-particle
energies are just one of a list of egregiously unphysical properties which these equations possess [3]: the
Klein-Gordon and Dirac equations have a decided attraction for working theorists because they tend to
be very tractable in calculations, in part because they are purely local in configuration representation.

Indeed fondness for the calculational tractability of the Klein-Gordon and Dirac equations acted as
a strong distraction from even awareness of the basic requirement which the correspondence principle
imposes on the quantum theory of relativistic free particles, namely that the classical relativistic Hamil-
tonian for a free particle of positive mass m,

Hfree = (m2c4 + |cp|2)
1
2 , (1a)

is to be quantized, upon which it straightforwardly becomes the positive-definite free-particle relativistic
Hamiltonian operator,

Ĥfree = (m2c4 + |cp̂|2)
1
2 , (1b)

which is, of course, the essential input to the time-dependent Schrödinger equation for the relativistic
free particle of positive mass m,

i~∂(|ψ(t)〉)/∂t = (m2c4 + |cp̂|2)
1
2 |ψ(t)〉. (1c)

Heeding the correspondence principle for relativistic free particles therefore requires that the time-
dependent relativistic free-particle Schrödinger equation of Eq. (1c) must supplant the “more tractable”
free-particle Klein-Gordon equation. It even must supplant the free-particle Dirac equation: the nonrel-
ativistic Pauli equation for the spin 1

2
particle has no spin dependence whatsoever when that particle is

free, and furthermore there always exists an inertial frame in which a free particle moves nonrelativisti-
cally (or is even at rest). It is of course clear that the relativistic free-particle Hamiltonian operator Ĥfree

of Eq. (1b) has no negative eigenenergies whatsoever. Thus enforcement of the correspondence principle
automatically makes it impossible to even speak about the mind-boggling notion of “negative-energy free
particles that travel backwards in time”, which forecloses any possibility of characterizing antiparticles
as such, eliminating the basis of the CPT theorem and its corollaries.

In the context of respecting the correspondence principle, antiparticles obviously must be introduced
at the multi-particle level via the imposition of CP invariance on the field-theory Hamiltonian—in the
longer run the nature of the physical mechanisms which in fact break CP invariance will need to be
discovered. Of course in this context of respecting the correspondence principle there is no reason at all
why these CP-breaking mechanisms should not produce particle-antiparticle mass splitting in consonance
with what the preliminary data from MINOS appear to indicate.

The relativistic free-particle Klein-Gordon and Dirac equations, notwithstanding their associated lists
of unphysical features [3], have, of course, been clung to by those who do calculations partly because they
are local in configuration representation, which inter alia results in local field theories. The relativistic
free-particle time-dependent Schrödinger equation of Eq. (1c), which follows from the correspondence
principle, has no unphysical features that correspond to either those of the Klein-Gordon or the Dirac
equation [3], but its representation in configuration space is nonlocal, so consequent quantum field the-
ories will as well be formally nonlocal, i.e., their field-theory Hamiltonians will not have underlying
Hamiltonian densities in the configuration regime.

Indeed there are other details of specifically the quantum electrodynamics which the correspondence
principle implies that must differ from those of the present theory, in which the Dirac equation figures
so prominently. In particular, the Dirac equation in the presence of an external electromagnetic field
needs to be replaced by a time-dependent Schrödinger equation which smoothly reduces to the time-
dependent relativistic free-particle Schrödinger equation that is given by Eq. (1c) when that external
electromagnetic field is switched off. That time-dependent Schrödinger equation must also smoothly
reduce to the nonrelativistic Pauli equation in the nonrelativistic limit. Such an equation has indeed
been developed from the nonrelativistic Pauli equation by systematically applying to it fully relativistic
upgrading techniques which are guided by the basic observation that there always exists an inertial frame
in which a positive-mass solitary particle is instantaneously moving nonrelativistically [3]. As pointed out
above, antiparticles must be brought into correspondence-principle compatible quantum electrodynamics
by imposing charge-conjugation invariance on the field-theory Hamiltonian (parity, of course, is conserved
in electrodynamics). After this is done, particle-antiparticle pair production and annihilation is made
possible by the imposition on the field-theory Hamiltonian of a further symmetry, namely its invariance
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under the interchange of particle annihilation with antiparticle creation as well as under the interchange
of antiparticle annihilation with particle creation.

Of course the correspondence-principle compatible quantum electrodynamics of a relativistic spin
0 charged particle of positive mass is to be handled in closely similar fashion; there the analogous
systematic relativistic upgrade of the nonrelativistic Hamiltonian of a spinless, positive-mass charged
particle in completely nonrelativistic interaction with an electric potential neatly results in precisely
the fully relativistic Hamiltonian from which Hamilton’s classical equations of motion produce the fully
relativistic version of the Lorentz force law [3]. This brings to light subtle and important physics that
the Klein-Gordon equation, which inherently reflects only the square of a Hamiltonian [3], is obviously
incapable of fully emulating.

Elucidation of the full structure of the modified quantum electrodynamics that is rooted in the re-
quirements of the correspondence principle, right up to and including its “Feynman rules”, requires a
quite massive investment of time, patience, and ingenuity on the part of a host of contributors. It is fur-
thermore naturally to be expected that the predictions of the modified theory will deviate somewhat from
the predictions of the currently existing quantum electrodynamics in which the physically problematic
Dirac or Klein-Gordon equations figure so prominently.

It is very interesting is this regard that a recent effort to obtain the value of the charge radius of the
proton to high precision from measurement of the Lamb shift in muonic hydrogen has produced a result
which is incompatible with the value of this charge radius that is obtained from combining precision
spectroscopy of electronic hydrogen with bound-state quantum electrodynamics [4]. The Lamb shift
itself is, of course, overwhelmingly due to a bound-state quantum electrodynamics effect (it vanishes in
the nonrelativistic Schrödinger and in the relativistic Dirac equation models of the hydrogen atom), with
only a very small percentage contribution to it arising from the charge radius of the proton, albeit that
very small proton charge radius percentage contribution is clearly very much greater (up to 2% [4]) for
muonic hydrogen than it would be for electronic hydrogen, whose Bohr radius is about two hundred times
larger. Generally speaking, this very big Bohr radius difference implies that the importance of quantum
electrodynamics calculations for the extraction of the charge radius of the proton from hydrogen atomic
spectroscopy looms very much larger for electronic than for muonic hydrogen, notwithstanding that it
is already very important for the latter. The above-mentioned two incompatible results (about five
standard deviations discrepancy [4]) for the proton charge radius naturally casts suspicion on the present
theoretical form of quantum electrodynamics in light of the far larger contribution made by quantum
electrodynamics than by the proton charge radius itself to the effects that are actually measured—
especially in view of the fact that the quantum electrodynamics contributions are systematically even
more dominant over the proton charge radius contribution in electronic hydrogen than they are in muonic
hydrogen.

In the following sections key theoretical physics issues alluded to in the preceding paragraphs are
treated at length along the lines expounded in Ref. [3]. We begin by pointing out the natural compatibility
of solitary-particle quantum mechanics with special relativity, which consequently reaffirms the validity
of the correspondence principle in the domain of solitary-particle relativistic quantum mechanics, and
we also point out the reason why only the Hamiltonian of Eq. (1a) is suitable for a relativistic classical
free particle of positive mass m.

Solitary-particle quantum mechanics’ inherent compatibility with relativity

The compatibility of solitary-particle quantum mechanics with special relativity is a straightforward
consequence Schrödinger’s two basic postulates for the wave function [5, 6], namely 〈r|ψ(t)〉. The first
Schrödinger postulate is the wave-function rule for the operator quantization of the particle’s canonical
three-momentum,

〈r|p̂|ψ(t)〉 = −i~∇r(〈r|ψ(t)〉), (2a)

which is as well, of course, a result of Dirac’s postulated canonical commutation rule [7].
The second Schrödinger wave-function postulate is the famed time-dependent Schrödinger wave equa-

tion [5, 7, 6],

i~∂(〈r|ψ(t)〉)/∂t = 〈r|Ĥ|ψ(t)〉, (2b)

which treats the operator quantization Ĥ of the particle’s classical Hamiltonian H in a manner that is
formally parallel to the way in which Eq. (2a) treats the operator quantization of the particle’s canonical
three-momentum. The straightforward theoretical physics implication of Eqs. (2a) and (2b) is simply
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that the operators p̂ and Ĥ are the generators of the wave function’s infinitesimal space and time transla-
tions, respectively. Therefore, in anticipation of the restriction on such generators which special relativity
imposes, these two equations are usefully combined into the single formally four-vector Schrödinger equa-
tion for the wave function,

i~∂(〈r|ψ(t)〉)/∂xµ = 〈r|p̂µ|ψ(t)〉, (2c)

where the contravariant four-vector space-time partial derivative operator ∂/∂xµ is defined as ∂/∂xµ
def
=

(c−1∂/∂t,−∇r), and the formal “contravariant four-vector” energy-momentum operator p̂µ is defined as
p̂µ

def
= (Ĥ/c, p̂). Since special relativity requires the contravariant space-time partial derivative four-

vector operator ∂/∂xµ to transform between inertial frames in Lorentz-covariant fashion, it is apparent
from Eq. (2c) that the Hamiltonian operator Ĥ will be compatible with special relativity if it is related
to the canonical three-momentum operator p̂ in such a way that also makes the energy-momentum
operator p̂µ a contravariant four-vector which transforms between inertial frames in Lorentz-covariant
fashion. This property of the Hamiltonian operator will, of course, be automatically satisfied if it is the
quantization of the Hamiltonian of a properly relativistic classical theory. Therefore the correspondence
principle definitely remains valid in the solitary-particle special-relativistic domain!

Now for a relativistic classical free particle of positive mass m, the logic of the Lorentz transformation
from its rest frame, where it has four-momentum (mc,0), to a frame where it has velocity v(where |v| < c)
leaves no freedom at all in the choice of its classical Hamiltonian. That Lorentz boost takes this particle’s
four-momentum to,

(mc(1− |v|2/c2)−
1
2 , mv(1− |v|2/c2)−

1
2 ) = (E(v)/c, p(v)), (3a)

which, together with the identity,

mc2(1− |v|2/c2)−
1
2 =

√
m2c4 + |cmv|2(1− |v|2/c2)−1, (3b)

implies that,

E(v) =
√
m2c4 + |cp(v)|2 = Hfree(p(v)). (3c)

Therefore the only physically suitable Hamiltonian for the relativistic classical free particle of positive
mass m is the Hfree of Eq. (1a). Thus adherence to the correspondence principle, together with the
categorical implication of Eqs. (3), determines the Hamiltonian operator for the relativistic free particle
of positive mass m to be the square-root operator given by Eq. (1b), namely,

Ĥfree =
√
m2c4 + |cp̂|2,

which implies that the time-dependent Schrödinger equation for the relativistic free particle of positive
mass m is that of Eq. (1c).

Since Eq. (1c) is therefore the only quantum physically correct time-dependent description of the
relativistic free particle of positive mass m, the free-particle Klein-Gordon and Dirac equations ipso
facto must be quantum physically defective. We now proceed to analyze the sources of those physical
defects and also to list some of the unphysical consequences of the free-particle Klein-Gordon and Dirac
equations.

The physically unsuitable Hamiltonian-squared basis of the free-particle Klein-Gordon
equation

Because the square-root Hamiltonian operator Ĥfree of Eq. (1b) for the positive-mass relativistic free
particle is nonlocal in configuration representation, which might conceivably present an awkward cal-
culational hurdle at a later stage when interactions with an external field are added, Klein, Gordon
and Schrödinger rejected the physically correct positive-mass relativistic free-particle time-dependent
Schrödinger equation of Eq. (1c) in favor of its iteration, which squares its square-root Hamiltonian
operator Ĥfree, and, in conjunction with Schrödinger’s canonical three-momentum quantization rule of
Eq. (2a), yields,

−~2∂2(〈r|ψ(t)〉)/∂t2 = (m2c4 − ~2c2∇2
r)〈r|ψ(t)〉, (4a)
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which is readily rewritten in the customary form for the free-particle Klein-Gordon equation,

(∂2/(∂xµ∂xµ) + (mc/~)2)〈r|ψ(t)〉 = 0. (4b)

To each stationary eigensolution e−i
√
m2c4+|cp|2 t/~〈r|p〉 of eigenmomentum p of the physically correct

time-dependent relativistic free-particle Schrödinger equation, given by Eq. (1c), Eq. (4a) adds an extra-
neous negative-energy partner solution e+i

√
m2c4+|cp|2 t/~〈r|p〉 of the same momentum, whose sole reason

for existing is the entirely gratuitous iteration of Eq. (1c)! These completely extraneous negative “free
solitary-particle” energies, −

√
m2c4 + |cp|2, do not correspond to anything that exists in the classical

dynamics of a free relativistic solitary particle, and by their negatively unbounded character threaten
to spawn unstable runaway phenomena should the free Klein-Gordon equation be sufficiently perturbed
(the Klein paradox) [6].

Due to the fact that the free-particle Klein-Gordon equation lacks a corresponding Hamiltonian
operator—it depends on only the square of the Hamiltonian operator Ĥfree, as is seen from Eq. (4a)
in conjunction with Eq. (2a)—it turns out, as is easily verified, that the two solutions of the same
momentum p which have opposite-sign energies, i.e., ±

√
m2c4 + |cp|2, fail to be orthogonal to each

other, which outright violates a key property of orthodox quantum mechanics! Without this property the
probablity interpretation of quantum mechanics cannot be sustained, and the Klein-Gordon equation is
unsurprisingly diseased in that regard, yielding, inter alia, negative probabilities [6].

Furthermore, free-particle Klein-Gordon theory, depending as it does on only the square of the Hamil-
tonian operator Ĥfree of Eq. (1b), rather than on that Hamiltonian operator itself, is thereby cut adrift
from the normal quantum mechanical relationship to the Heisenberg picture, Heisenberg’s equations of
motion and the Ehrenfest theorem.

The fact of the matter is that the square of a Hamiltonian operator, unlike that Hamiltonian operator
itelf, has no cogent physical meaning ! That is the source of the above list of unphysical consequences of
the free-particle Klein-Gordon equation.

Space-time mishandling of Schrödinger’s equation that engenders Dirac’s free-particle equa-
tion

Dirac pondered the foregoing list of the free-particle Klein-Gordon equation’s unphysical properties,
especially its failure to have a probability interpretation, and concluded that its dependence on only
the square of the Hamiltonian operator Ĥfree of Eq. (1b) was not tenable, but that the time-dependent
description of a quantum mechanical system instead must be couched in terms of a time-dependent
Schrödinder equation of the form of Eq. (2b) with a Hermitian Hamiltonian operator Ĥ. Very unfortu-
nately indeed, notwithstanding that the correspondence principle mandates that this Ĥ must equal the
Ĥfree of Eq. (1b) for the case of a positive-mass relativistic free particle, Dirac, emulating Klein, Gordon
and Schrödinger, continued to reject the physically correct square-root Hamiltonian operator Ĥfree of
Eq. (1b) for the positive-mass relativistic free particle out of concern that its nonlocality in configuration
representation might present an awkward calculational hurdle at a later stage when interactions of that
particle with an external field are included.

Casting about for a more compelling theoretical “justification” than mere concerns over conceivable
calculational hurdles for his quantum-physically untenable rejection of the square-root Hamiltonian op-
erator Ĥfree, Dirac hit upon a spurious “relativistic need” for the time-dependent Schrödinger equation
of Eq. (2b) to by itself exhibit “space-time coordinate symmetry” [8, 9, 6].

It is, of course, abundantly clear that it is the four-vector Schrödinger equation system of Eq. (2c)
which in fact manifests just this space-time coordinate symmetry when its Hamiltonian operator Ĥ is
related to the canonical three-momentum operator p̂ in such a way that the energy-momentum operator
p̂µ = (Ĥ/c, p̂) is a contravariant four-vector which transforms between inertial frames in Lorentz-covariant
fashion, a property of Ĥ which is automatically satisfied when it is the quantization of a Hamiltonian H
of a properly relativistic classical theory ! Thus the time-dependent Schrödinger equation of Eq. (2b) upon
which Dirac myopically fastened his “space-time coordinate symmetry” gaze is the mere time component
of a Lorentz-covariant four-vector equation system, and, as such, is not space-time coordinate symmetric
at all since it is completely skewed toward time!

The fact of this utter skewing toward time of the time-dependent Schrödinger equation of Eq. (2b)
is driven home by the theoretical physics content which its mathematical presentation unmistakably
conveys, namely that the Hamiltonian operator is the generator of the time translations of the wave
function. To attempt to force “space-time coordinate symmetry" on an equation which is so completely
skewed toward time as is the time-dependent Schrödinger equation is a classic instance of attempting to
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“jam a square peg into a round hole”, and can only result in a plenitude of unphysical consequences.
Blithely insensitive to the necessarily completely time-skewed nature of the time-dependent Schrödinger

equation of Eq. (2b), Dirac noted that its left-hand side is proportional the time-derivative operator ∂/∂t,
and therefore sought to impose space-time coordinate symmetry on it by requiring its right-hand side to
be (inhomogeneously) linear in the spatial gradient operator ∇r. Of course the right-hand side of the
time-dependent Schrödinger equation of Eq. (2b) only involves the Hamiltonian operator Ĥ in configu-
ration representation, whose (inhomogeneous) linearity in ∇r guarantees its local nature, which of course
was Dirac’s overriding consideration from the very beginning !

More abstractly, Dirac’s imposition of space-time coordinate symmetry on the configuration-representation
time-dependent Schrödinger equation of Eq. (2b) implies that its Hamiltonian operator Ĥ is (inhomo-
geneously) linear in the momentum operator p̂. If we now calculate the particle velocity operator dr̂/dt
that is implied by such a Hamiltonian operator, i.e., one which is linear in the momentum operator p̂, by
using Heisenberg’s equation of motion, we immediately obtain that this velocity operator dr̂/dt is com-
pletely independent of the momentum operator p̂. However, we know very well that for the postive-mass
relativistic free particle in the nonrelativistic regime the velocity operator dr̂/dt is proportional to p̂ (i.e.,
equals p̂/m), and, more generally, the relativistic free particle is always expected to have its velocity
operator dr̂/dt parallel to the momentum operator p̂, but this is obviously impossible if dr̂/dt is inde-
pendent of p̂, which is the clear consequence of Dirac’s physically misconceived effort to force space-time
coordinate symmetry on the time-dependent Schrödinger equation of Eq. (2b). In stark contrast, if we
use for the Hamiltonian operator Ĥ in the time-dependent Schrödinger equation of Eq. (2b) the positive-
mass relativistic free-particle square-root Hamiltonian operator Ĥfree of Eq. (1b) that is mandated by the
correspondence principle, Heisenberg’s equation of motion yields,

dr̂/dt = p̂/(m2 + |p̂/c|2)
1
2 ,

which is obviously the correct result ! In other words, the squirming by Klein, Gordon, Schrödinger and
Dirac to evade the mandate of the correspondence principle achieves the upending of correct theoretical
physics.

It is clear that to continue with Dirac’s physically misconceived approach is counterproductive from
the standpoint of attaining sound understanding of positive-mass relativistic solitary-particle quantum
mechanics. However, it is the case that textbooks [6, 9, 10] have simply not presented the most strikingly
unphysical consequences of Dirac’s approach to the positive-mass relativistic free particle, which makes
it worthwhile to continue with Dirac’s development in order to expose those results to the light of day.

Dirac’s physically misconceived imposition of space-time coordinate symmetry on the time-dependent
solitary-particle Schrödinger equation of Eq. (2b) does not fully determine its Hamiltonian operator Ĥ;
it only determines that Ĥ is (inhomogeneously) linear in the components of the momentum operator p̂.
For the free particle of positive mass m, we can write such a Ĥ as,

ĤD = ~α · p̂c+ βmc2, (5a)

where what is known about β and the components of ~α is that they are obviously dimensionless, and,
because the solitary particle is free, they won’t depend on the particle’s coordinate operator r̂, and so are
constants in the particle’s quantized phase-space vector operator (r̂, p̂). Since that is all that can be said
about β and ~α without any further assumption, Dirac decided to make an assumption which essentially
determines β and ~α. Having up to this point deliberately snubbed the positive-mass relativistic free-
particle square-root Hamiltonian operator Ĥfree of Eq. (1b)—which is mandated by the correspondence
principle to in fact be the physically correct one—Dirac now decided to pull Ĥfree into the proceedings
by making it a requirement that,

(ĤD)2 = (Ĥfree)
2 = m2c4 + |cp̂|2. (5b)

Notwithstanding that this requirement superficially appears to be a plausible one, Dirac failed to note
that the square of a Hamiltonian operator has no cogent physical meaning, just as Klein, Gordon and
Schrödinger had earlier failed to note this very same pertinent fact ! Setting equal two mathematical
entities which each lack definite physical meaning would seem at least as likely to generate unphysical
consequences as physically legitimate ones. Indeed the requirement of Eq. (5b) turns out to be directly
responsible for the fact that the eigenenergy spectrum of ĤD exactly matches the energies of the solutions
of the free-particle Klein-Gordon equation, including that equation’s extraneous negative energies which
are unbounded below! So the full theory of the free-particle Dirac Hamiltonian ĤD is underlain by not
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merely one, but by two physically misconceived requirements. It is perhaps little wonder, then, as we
shall shortly see, that ĤD gives rise to some stunningly unphysical predictions.

The upshot of the requirement of Eq. (5b) turns out to be that β and the three components of ~α
are Hermitian matrices (because ĤD is required to be a Hermitian operator) which each square to the
identity matrix and which all mutually anticommute. These properties of themselves imply that these
four matrices are all as well traceless [6], which implies that ĤD is traceless as well. Therefore ĤD

must have negative eigenvalues if it has positive ones (and conversely). This fact, taken together with
Eq. (5b) itself, implies the aforementioned identity of the eigenenergy spectrum of ĤD with the energies
of the solutions of the free-particle Klein-Gordon equation, including that equation’s extraneous negative
energies, which are unbounded below.

Returning now to the issue that was broached above concerning the free Dirac particle’s velocity
operator, we obtain from Eq. (5a) and the Heisenberg equation of motion that,

dr̂/dt = ~αc, (6a)

which has the highly unphysical property of being completely independent of the particle’s momentum
operator p̂, as was already pointed out above. Even worse, the free particle’s speed operator comes out
to be,

|dr̂/dt| =
√

3 cI, (6b)

which stunningly has a but a single eigenvalue that exceeds the speed of light by 73%! It is most inter-
esting that while it is not uncommon for textbooks to at least mention the velocity operator result of
Eq. (6a) [6]—and then to rapidly turn away from it—there is apparently not a single textbook which uses
Eq. (6a) to obtain the very simple consequent speed operator result of Eq. (6b), which is, of course, utterly
unphysical to an extent that is breathtaking. But underlain as the free-particle Dirac Hamiltonian oper-
ator ĤD is by not merely one but actually two requirements that are not physically sensible, namely the
imposition of space-time symmetry on its time-dependent Schrödinger equation and the imposition on it
of Eq. (5b), it is perhaps not surprising that it can give rise to such a blatantly relativistically-forbidden
consequence.

Newton’s first law of motion implies that the acceleration of a free particle vanishes identically. If we
calculate d2r̂/dt2 from the positive-mass relativistic free-particle square-root Hamiltonian operator Ĥfree

of Eq. (1b), which is mandated by the correspondence principle, by applying Heisenberg’s equation of
motion twice in succession, we indeed obtain that this acceleration operator vanishes identically. It is a
very different story, however, when we switch this calculation to the free-particle Dirac Hamiltonian ĤD

of Eq. (5a). In that case, Heisenberg’s equation of motion yields,

d2r̂/dt2 = (imc3/~)(2β~α + ((~α× ~α)× p̂)/(mc)), (7a)

which fails to vanish. Note that the matrix cross product (~α × ~α) does not vanish because the three
components of ~α mutually anticommute. From Eq. (7a) we can calculate the magnitude of the free Dirac
particle’s spontaneous acceleration,

|d2r̂/dt2| = (2
√

3mc3/~)(1 + (2/3)(|p̂|/(mc))2)
1
2 , (7b)

whose minimum value, (2
√

3 mc3/~), is, for the case of the electron, well in excess of 1028g, where g is
the acceleration of gravity at the earth’s surface. This dumbfounding spontaneous acceleration of the
“free Dirac electron”, which stupendously violates Newton’s first law of motion, again drives home the
lesson of just how unphysical the Dirac free-particle Hamiltonian ĤD is—but this result as well seems to
have escaped the notice of textbooks.

It is readily shown that the orbital angular momentum operator L̂ def
= r̂×p̂ commutes with the positive-

mass relativistic free-particle square-root Hamiltonian operator Ĥfree of Eq. (1b) that is mandated by the
correspondence principle. It commutes as well with the nonrelativistic free-particle Pauli Hamiltonian
operator—which is simply |p̂|/(2m) for that free-particle case. However it does not commute with
the free-particle Dirac Hamiltonian ĤD, which yields the nonvanishing spontaneous spin-orbit torque
operator,

dL̂/dt = ~α× p̂c, (8a)
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whose magnitude is,

|dL̂/dt| =
√

2 |p̂|c, (8b)

Now the relativistic free particle’s kinetic energy is,

T̂ = (m2c4 + |cp̂|2)
1
2 −mc2 = ((ĤD)2)

1
2 −mc2. (8c)

If we take the dimensionless ratio of the Dirac particle’s spontaneous spin-orbit torque magnitude to its
kinetic energy, we obtain,

|dL̂/dt|/T̂ =
√

2 ((1 + (mc/|p̂|)2)
1
2 + (mc/|p̂|)), (8d)

which increases monotonically without bound from its ultrarelativistic asymptotic value of
√

2 as |p̂|
decreases. This free-particle Dirac-theory result is, of course, completely inconsistent with the free-
particle Pauli theory, where this ratio always vanishes identically for nonvanishing |p̂|.

So the Dirac theory certainly does not reduce to the Pauli theory merely by going to sufficiently small
nonzero values of momentum. That was already clear, of course, from the fact that the Dirac particle’s
speed always has the value

√
3 c irrespective of its momentum, which doesn’t accord with the free-particle

Pauli theory speed operator |p̂|/m at all when |p̂| � mc. The highly anomalous spontaneous spin-orbit
coupling of the free Dirac particle that we discussed above seems to have eluded the notice of textbooks
as well.

The examples of astoundingly unphysical results which emerge from the Dirac free-particle Hamilto-
nian ĤD can apparently be multiplied almost at will: e.g., the noncommutativity of orthogonal compo-
nents of the Dirac velocity operator of Eq. (6a) has surpassingly unphysical systematic characterics,

[(dr̂/dt)x, (dr̂/dt)y] = 2c2αxαy. (9)

This orthogonal velocity-component commutator refuses to vanish even in the classical limit that ~→ 0,
in defiance of everything known about classical velocity. If one then struggles for a glimmer of physical
comprehension of this orthogonal velocity-component commutator by going to the nonrelativistic limit
c→∞, where it obviously also should vanish, it instead diverges ! The highly unphysical behavior of the
commutators of a list of observables in the free-particle Dirac theory has apparently not been noticed by
textbooks either.

Relativistic solitary-particle quantum mechanics in an electromagnetic poten-
tial

The preceding subsections have made it abundantly clear that the Klein-Gordon and Dirac theories
cannot sensibly describe the positive-mass relativistic free particle, but the straightforward square-root
Hamiltonian operator Ĥfree of Eq. (1b), which is mandated by the correspondence principle for this
task, describes the positive-mass relativistic free particle flawlessly. We shall now present in detail the
extensions of Ĥfree which were developed in Refs. [11, 3] for the cases of a solitary relativistic spin 0 and
spin 1

2
particle of charge e and positive mass m in the presence of an external electromagnetic potential

Aµ(r, t).
The underlying idea is that if one has a trustworthy description of the physics experienced by a solitary

particle that moves nonrelativistically, the physics that it experiences when it moves relativistically boils
down to Lorentz transformations from an appropriate succession of inertial frames in each of which it
instantaneously moves nonrelativistically.

However, instead of trying to model a self-consistently nonrelativistic succession of inertial frames,
and then carrying out the corresponding Lorentz transformations, the technical approach adopted here is
rather to try to associate each individual term of the solitary particle’s nonrelativistic Hamiltonian with a
fully Lorentz-covariant four-momentum whose time component reduces to that particular nonrelativistic
Hamiltonian term in any inertial frame where the particle is moving sufficiently slowly. All those individ-
ual Lorentz-covariant four-momenta are then summed to produce the solitary particle’s Lorentz-covariant
total four-momentum. The total three-momentum part of the solitary particle’s total four-momentum
is obviously identified as the generator of the solitary particle’s spatial translations, and therefore as
the solitary particle’s relativistic canonical three-momentum. Of course the solitary particle’s relativistic
total energy, when expressed as function of its relativistic canonical three-momentum, the time, and
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that particle’s three space coordinates comprises that particle’s relativistic Hamiltonian. Initially, of
course, the individual four-momenta that contribute to the solitary particle’s total four-momentum will
be couched in the language of the particle’s three space coordinates, the time, and the particle’s relativis-
tic kinetic three-momentum. After identification of the particle’s canonical (i.e., total) three-momentum,
it is necessary to solve for its kinetic three-momentum as a function of its canonical three-momentum
in order to be able to reexpress its total energy as its Hamiltonian. Unfortunately, there is no guarantee
that the particle’s relativistic kinetic three-momentum can be worked out as a function of its relativistic
canonical three-momentum in closed form. Thus the solitary particle’s relativistic Hamiltonian itself
could conceivably only be available as a sequence of approximations.

We begin by applying this program to a spin 0 solitary particle of positive mass m and charge e in
the presence of an external electromagnetic potential Aµ(r, t). Note that all magnetic effects of such a
potential on the spin 0 charged particle’s motion vanish entirely in the particle’s rest frame, and are,
more generally, of order O(1/c), but in nonrelativistic physics the speed of light c is regarded as an
asymptotically large parameter. Thus the strictly nonrelativistic Hamiltonian operator for this particle
involves only the electromagnetic potential’s time component A0(r, t),

Ĥ
(NR)
EM;0 = |p̂|2/(2m) + eA0(r̂, t). (10a)

Because of the technical issue regarding the choice of ordering of noncommuting operators (whose res-
olution we allude to below), it is convenient to develop the relativistic four-momentum as a function
of classical (r,p) phase space rather than as a function of the already quantized (r̂, p̂) phase space of
Eq. (10a). The solitary particle’s nonrelativistic kinetic energy |p|2/(2m), plus its rest mass energy mc2,
is well-known to correspond to c times its Lorentz-covariant free-particle kinetic four-momentum pµ,

pµ
def
= ((m2c2 + |p|2)

1
2 ,p),

where, of course, p is the particle’s relativistic kinetic three-momentum, which was carefully distinguished
in the discussion above from its relativistic total (i.e., canonical) three-momentum. It is apparent that
in the nonrelativistic limit |p| � mc, the time component times c of pµ does indeed, as just mentioned,
behave as,

cp0 ≈ mc2 + |p|2/(2m).

The potential energy term eA0(r, t) of H(NR)
EM;0, divided by c, is obviously the time component of the

Lorentz-covariant four-momentum eAµ(r, t)/c. Therefore adding eAµ/c to pµ produces a fully Lorentz-
covariant total four-momentum whose time component times c reduces, in any inertial frame in which
the nonzero-mass charged spin 0 solitary particle instantaneously has a sufficiently slow speed (i.e.,
|p| � mc), to this particle’s nonrelativistic classical Hamiltonian H

(NR)
EM;0 (which corresponds to the

quantized Hamiltonian operator Ĥ(NR)
EM;0 of Eq. (10a)) plus this particle’s rest mass energy mc2. We

therefore regard,

P µ def
= pµ + eAµ(r, t)/c, (10b)

as this solitary particle’s total four-momentum. Eq. (10b) implies that this particle’s relativistic total
three-momentum is,

P = p + eA(r, t)/c, (10c)

and that its relativistic total energy is,

E(r,p, t) = cP 0 = (m2c4 + |cp|2)
1
2 + eA0(r, t). (10d)

Here we are in the fortunate position of being able to solve Eq. (10c) for the particle’s relativistic kinetic
three-momentum p as a function of its relativistic total (i.e., canonical) three-momentum P in closed
form, i.e.,

p(P) = P− eA(r, t)/c, (10e)

which we must now substitute into Eq. (10d) for the relativistic total energy in order to reexpress that
total energy as the relativistic Hamiltonian H

(REL)
EM;0 (r,P, t), i.e.,

H
(REL)
EM;0 (r,P, t)

def
= E(r,p(P), t).
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With this we obtain from Eqs. (10d) and (10e) the fully relativistic classical Hamiltonian H(REL)
EM;0 (r,P, t),

that uniquely corresponds to our original nonrelativistic Hamiltonian operator Ĥ(NR)
EM;0 of Eq. (10a),

H
(REL)
EM;0 (r,P, t) = (m2c4 + |cP− eA(r, t)|2)

1
2 + eA0(r, t). (10f)

Because of the presence of the square root in Eq. (10f) for H(REL)
EM;0 (r,P, t), there could conceivably be

an issue regarding the ordering of the mutually noncommuting operators r̂ and P̂ when one attempts

quantize this classical Hamiltonian H
(REL)
EM;0 (r,P, t) to become the Hamiltonian operator Ĥ

(REL)
EM;0 . Use

of the Hamiltonian phase-space path integral [12] with H
(REL)
EM;0 (r,P, t) in its classical form as given by

Eq. (10f) provides one definitive solution to any such operator-ordering issue. Another completely equiv-
alent solution to this issue lies with a natural slight strengthening of Dirac’s canonical commutation rule
such that it remains self-consistent [13]. From either of these approaches the resulting unambiguous
operator-ordering rule turns out to be the one of Born and Jordan [14].

It is well worth noting that the relativistic classical Hamiltonian H(REL)
EM;0 (r,P, t) of Eq. (10f) for the

solitary spin 0 charged particle, when inserted into Hamilton’s classical equations of motion, yields, after
taking Eq. (10c) into account, the fully relativistic version of the Lorentz-force law. In other words, the
relativistic solitary charged-particle Hamiltonian H(REL)

EM;0 (r,P, t) of Eq. (10f) embodies precisely the well-
known classical relativistic physics of the charged particle developed by H. A. Lorentz [15]. We also note
that in the limit that the solitary-particle charge e goes to zero, H(REL)

EM;0 (r,P, t) reduces to the relativistic
free-particle Hamiltonian Hfree of Eq. (1a), as it indeed must. These results buttress confidence that the
above-described systematic approach to upgrading physically trustworthy nonrelativistic solitary-particle
Hamiltonians to fully relativistic ones is physically sound.

We now turn to the positive-mass spin 1
2
solitary charged particle in the presence of an external elec-

tromagnetic potential Aµ(r, t). Its nonrelativistic Hamiltonian H(NR)

EM; 12
is the same as the nonrelativistic

Hamiltonian H
(NR)
EM;0 of the spin 0 solitary charged particle except for an additional interaction energy

between the external magnetic field and the spin 1
2
particle’s magnetic dipole moment due to its intrinsic

spin, i.e., its Pauli spin magnetic dipole energy. Notwithstanding that this Pauli energy is customarily
formally written as being proportional to (1/c), it must nonetheless be kept in the nonrelativistic limit
because it fails to vanish in the spin 1

2
particle’s rest frame,

H
(NR)

EM; 12
= |p|2/(2m) + (ge/(mc))(~/2)~σ · (∇r ×A(r, t)) + eA0(r, t). (11a)

Just as in the case of H(NR)
EM;0, we deliberately refrain for the time being from quantizing H

(NR)

EM; 12
in its

conventional phase-space degrees of freedom (r,p) in order to facilitate the derivation of its natural
fully relativistic upgrade. We cannot, however, switch off the inherently quantum nature of the spin 1

2

particle’s intrinsic spin without causing its physical effects to disappear altogether, so we have no choice
but to accept the Hamiltonian H(NR)

EM; 12
of Eq. (11a) as a two-by-two Hermitian matrix whose four entries

are (complex-valued) classical dynamical variables. The Pauli spin magnetic dipole energy contribu-
tion to H(NR)

EM; 12
is, however, the only part of this nonrelativistic Hamiltonian which is not a multiple of

the two-by-two identity matrix. Now the Lorentz-covariant four-momenta that we shall be developing
in the course of deriving the natural relativistic upgrade of H(NR)

EM; 12
will of course themselves naturally

come out to be four-vectors of two-by-two matrices, but this should not present an issue insofar as their
four components always mutually commute. To ensure that this is the case, we shall “quarantine” the
non-identity Pauli spin magnetic dipole energy matrix into a Lorentz scalar. We can then render this
entity dimensionless by dividing it by mc2. If we now multiply this dimensionless Lorentz scalar by
the particle’s kinetic four-momentum pµ = ((m2c2 + |p|2) 1

2 ,p), we will indeed have a Lorentz-covariant
four-momentum contribution whose time component times c reduces to the Pauli energy matrix in the
particle rest frame, which is precisely what we require.

There remains, of course, the challenging problem of reexpressing the complicated Pauli energy matrix
term of Eq. (11a) as a Lorentz scalar. In relativistic tensor language, the magnetic field axial vector
(∇r × A(r, t)) that appears in the Pauli energy matrix term of Eq. (11a) comprises a certain three-
dimensional part of the four-dimensional relativistic second-rank antisymmetric electromagnetic field
tensor F µν(r, t) = ∂µAν(r, t) − ∂νAµ(r, t). Now if we can manage to reexpress the spin 1

2
angular-

momentum axial vector (~/2)~σ that appears in the Pauli energy matrix term of Eq. (11a) as a “matching”
three-dimensional part of a four-dimensional relativistic second-rank antisymmetric tensor sµν , hopefully
the Pauli energy matrix term of Eq. (11a) will end up being proportional to to their Lorentz-scalar
contraction sµνFµν(r, t). As the first step toward this goal, we define the natural three-dimensional
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second-rank antisymmetric spin 1
2
tensor Sij in terms of the spin 1

2
angular momentum axial vector

(~/2)~σ,
Sij

def
= (~/2)εijkσk,

and then note that the most complicated factor in the Pauli energy matrix term of Eq. (11a) neatly
reduces to a contraction of Sij with the well-known magnetic-field three-dimensional part F ij(r, t) of
F µν(r, t), i.e.,

(~/2)~σ · (∇r ×A(r, t)) = (1/2)SijF ij(r, t).

This allows us to reexpress the nonrelativistic Hamiltonian matrixH(NR)

EM; 12
of Eq. (11a) in the relativistically

more suggestive form,

mc2 +H
(NR)

EM; 12
= mc2[1 + |p|2/(2m2c2) + (g/2)(e/(m2c3))SijF ij(r, t)] + eA0(r, t). (11b)

Of course we need to go beyond Sij to the spin 1
2
particle’s fully covariant four-dimensional antisym-

metric spin tensor sµν . In the particle rest frame, namely in the special inertial frame where the particle
kinetic three-momentum p vanishes, the nine space-space components of sµν must clearly be the nine
components of Sij, and its remaining seven components must be filled out with zeros, i.e.,

sµν(p = 0)
def
= δµi δ

ν
j S

ij,

because this ensures that, in the particle rest frame,

sµν(p = 0)Fµν(r, t) = SijF ij(r, t).

Once a tensor is fully determined in one inertial frame, it is fully determined in all inertial frames
by application of the appropriate Lorentz transformation to its indices. To get from the particle rest
frame to the inertial frame where the particle has kinetic three-momentum p simply requires the ap-
propriate Lorentz-boost four-dimensional matrix Λµ

α(v(p)/c) that is characterised by the corresponding
dimensionless scaled relativistic particle velocity,

v(p)/c = (p/(mc))/(1 + |p/(mc)|2)
1
2 ,

and its accompanying dimensionless time-dilation factor,

γ(p) = (1 + |p/(mc)|2)
1
2 ,

so that, in general,
sµν(p) = Λµ

i (v(p)/c)Λν
j (v(p)/c)Sij,

which, of course, ensures that sµν(p)Fµν(r, t) is a Lorentz scalar that Lorentz-invariantly conveys the
spin 1

2
particle’s rest-frame value of SijF ij(r, t).

With that, we are in the position to be able to write down the Lorentz-covariant total four-momentum
matrix P µ for the spin 1

2
particle in the presence of the external electromagnetic potential Aµ(r, t) that

corresponds to its nonrelativistic energy matrix of Eq. (11b) in the same way that the Lorentz-covariant
total four-momentum P µ of Eq. (10b) for the spin 0 particle in the presence of Aµ(r, t) corresponds to
its nonrelativistic energy (mc2 +H

(NR)
EM;0),

P µ def
= pµ[1 + (g/2)(e/(m2c3))sαβ(p)Fαβ(r, t)] + eAµ(r, t)/c. (11c)

From P µ we obtain the spin 1
2
particle’s relativistic total energy matrix,

E(r,p, t) = cP 0 = (m2c4 + |cp|2)
1
2 [1 + (g/2)(e/(m2c3))sµν(p)Fµν(r, t)] + eA0(r, t), (11d)

and also its relativistic total (i.e., canonical) three-momentum matrix,

P = p[1 + (g/2)(e/(m2c3))sµν(p)Fµν(r, t)] + eA(r, t)/c. (11e)

It is apparent from Eq. (11e) that we cannot solve for the spin 1
2
particle’s kinetic momentum matrix

p(P) as a function of its canonical momentum matrix P in closed form, but we can express p(P) in the
“iteration-ready” form,
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p(P) = (P− eA(r, t)/c)[1 + (g/2)(e/(m2c3))sµν(p(P))Fµν(r, t)]
−1. (11f)

Furthermore, the spin 1
2
particle’s relativistic total energy matrix E(r,p, t) of Eq. (11d) yields the

schematic form of its relativistic Hamiltonian matrix H(REL)

EM; 12
(r,P, t) as simply E(r,p(P), t),

H
(REL)

EM; 12
(r,P, t) = (m2c4 + |cp(P)|2)

1
2 [1 + (g/2)(e/(m2c3))sµν(p(P))Fµν(r, t)] + eA0(r, t). (11g)

If we take the limit g → 0 in Eqs. (11f) and (11g), then H
(REL)

EM; 12
(r,P, t) → H

(REL)
EM;0 (r,P, t), as is easily

checked from Eq. (10f). Of course it is nothing more than basic common sense that fully relativistic
spin 1

2
theory must reduce to fully relativistic spin 0 theory when the spin coupling of the single particle

to the external field is switched off, but analogous cross-checking between the Dirac and Klein-Gordon
theories is never so much as discussed! It is certainly possible to add a term to the Dirac Hamiltonian
that cancels out it’s supposed g = 2 spin coupling to the magnetic field, but the result of doing this bears
very little resemblance to the Klein-Gordon equation in the presence of the external electromagnetic
potential! Elementary consistency checks are obviously not the strong suit of those two “theories”! If
we similarly take the limit e → 0 in Eqs. (11f) and (11g), then H(REL)

EM; 12
(r,P, t) → (m2c4 + |cP|2) 1

2 , the
free-particle Hamiltonian of Eq. (1a), as is physically required.

It is unfortunate that Eq. (11f) for p(P) is not amenable to closed-form solution, but if we assume
that the spin coupling term, (g/2)(e/(m2c3))sµν(p(P))Fµν(r, t), which is a dimensionless Hermitian two-
by-two matrix, effectively has the magnitudes of both of its eigenvalues much smaller than unity (which
should be a very safe assumption for atomic physics), then we can approximate p(P) via successive
iterations of Eq. (11f), which produces the approximation (P − eA(r, t)/c) for p(P) through zeroth
order in the spin coupling and,

p(P) ≈ (P− eA(r, t)/c)[1 + (g/2)(e/(m2c3))sµν(P− eA(r, t)/c)Fµν(r, t)]
−1,

through first order in the spin coupling. We wish to interject at this point that since sµν(p(P)) is an
antisymmetric tensor, the tensor contraction sµν(p(P))Fµν(r, t) is equal to 2sµν(p(P))∂µAν(r, t), which
is often a more transparent form. Now if we simply use the approximation (P − eA(r, t)/c) through
zeroth order in the spin coupling for the kinetic three-momentum matrix p(P) of Eq. (11f), we obtain
the following approximation to the spin 1

2
relativistic Hamiltonian matrix H(REL)

EM; 12
(r,P, t) of Eq. (11g),

H
(REL)

EM; 12
(r,P, t) ≈ (m2c4 + |cP− eA(r, t)|2)

1
2 [1 + (ge/(m2c3))sµν(P− eA(r, t)/c)∂µAν(r, t)] + eA0(r, t).(11h)

The approximation on the right-hand side of Eq. (11h) to the Hamiltonian matrix H(REL)

EM; 12
(r,P, t) (whose

schematic form is given by Eq. (11g)) for the positive-mass spin 1
2
charged relativistic solitary particle

in the presence of the external electromagnetic potential Aµ(r, t), is a two-by-two matrix whose four
entries are (complex-valued) classical dynamical variables. These four entries must each be quantized in
accordance with the Born-Jordan operator-ordering rule, analogously to the case of the spin 0 relativistic
solitary-particle Hamiltonian H

(REL)
EM;0 (r,P, t) of Eq. (10f). Of course higher-order approximations in

the spin coupling to the spin 1
2
solitary-particle Hamiltonian matrix H

(REL)

EM; 12
(r,P, t) must likewise be

quantized.

Antiparticles from field-theory symmetry instead of from negative energy

Let us denote the just-mentioned Born-Jordan quantization of the ij entry (i, j = 1, 2) of the Hamiltonian
matrix H

(REL)

EM; 12
(r,P, t) (given schematically by Eq. (11g)) for the relativistic spin 1

2
solitary particle

of charge e and positive mass m in the presence of the external electromagnetic potential Aµ(r, t) as(
Ĥ

(REL)
1
2

(e,m, [Aµ])
)
ij
. Then a basic quantum field-theory model for electrons alone, which all have

charge −e and mass m−, in the presence of the external electromagnetic potential Aµ(r, t) is given by
the Hamiltonian operator,

Ĥ
(−)
F =

∫
d3r
∑2

i=1

∫
d3r′

∑2
j=1(ψ

†
−(r))i〈r|

(
Ĥ

(REL)
1
2

(−e,m−, [Aµ])
)
ij
|r′〉(ψ−(r′))j. (12a)

Since the relativistic solitary-particle Hamiltonian H
(REL)

EM; 12
(r,P, t) has square roots whose arguments

involve the canonical momentum P, the above-utilized configuration representation of its quantization
Ĥ

(REL)
1
2

(e,m, [Aµ]) will be nonlocal, and therefore the quantum field-theory Hamiltonian operator Ĥ(−)
F

clearly cannot be expressed in terms of a local Hamiltonian density in the configuration regime utilized
in Eq. (12a).
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Now a quantum field-theory model which involves electrons alone is obviously extremely charge asym-
metric. To extend our basic quantum field-theory model to one which manifests the symmetry of charge
conjugation invariance, we are compelled to postulate the existence of another particle that has the op-
posite charge to that of the electron, but is otherwise identical in all respects to the electron. Denoting
the creation fields of this postulated positron as (ψ†+(r))i, we readily write down a minimally extended
basic quantum field-theory Hamiltonian operator that indeed manifests charge conjugation invariance,

Ĥ
(−+)
F =

∫
d3r
∑2

i=1

∫
d3r′

∑2
j=1

[
(ψ†−(r))i〈r|

(
Ĥ

(REL)
1
2

(−e,m−, [Aµ])
)
ij
|r′〉(ψ−(r′))j+

(ψ†+(r))i〈r|
(
Ĥ

(REL)
1
2

(+e,m−, [A
µ])
)
ij
|r′〉(ψ+(r′))j

]
.

(12b)

The minimally extended basic quantum field-theory Hamiltonian operator Ĥ(−+)
F of Eq. (12b) de-

scribes the scattering (or binding) of both relativistic electrons and relativistic positrons by the external
electromagnetic potential Aµ(r, t). We know, however, that in principle such a potential could, if it
were sufficiently rapidly-varying and strong, produce (or annihilate) electron-positron pairs. We can
open a theoretical door to the occurrence of these electron-positron pair processes by imposing a further
charge-related symmetry on the quantum field-theory Hamiltonian of Eq. (12b), namely its invariance
under interchange of electron annihilation with positron creation and also under interchange of positron
annihilation with electron creation. The simplest extension of Ĥ(−+)

F which manifests this “charge equiv-
alence” symmetry under the interchanges (ψ−(r))i ↔ (ψ†+(r))i and (ψ+(r))i ↔ (ψ†−(r))i, and which as
well maintains the charge conjugation invariance symmetry, is given by the Hamiltonian operator,

Ĥ
(−↔+†)
F = 1

2

∫
d3r
∑2

i=1

∫
d3r′

∑2
j=1

[
((ψ−(r))i + (ψ†+(r))i)

†〈r|
(
Ĥ

(REL)
1
2

(−e,m−, [Aµ])
)
ij
|r′〉((ψ−(r′))j + (ψ†+(r′))j)+

((ψ+(r))i + (ψ†−(r))i)
†〈r|
(
Ĥ

(REL)
1
2

(+e,m−, [A
µ])
)
ij
|r′〉((ψ+(r′))j + (ψ†−(r′))j)

]
.

(12c)

It is apparent from Eq. (12c) that the imposition of the twin symmetries of charge conjugation invari-
ance and “charge equivalence” does indeed produce a quantum field-theory model for electron-positron
pair creation and annihilation by the external electromagnetic potential Aµ(r, t), as well as electron and
positron scattering (or binding) by that potential.

Now the visible universe is obviously skewed toward the preponderance of electrons over positrons,
so we certainly expect that there is a physical agency which breaks charge conjugation invariance. While
there is experimental evidence of such an agency, contemporary theoretical physics has not yet under-
stood it in more than phenomenological fashion, but one would suppose that there must exist fields
whose effective interaction strength magnitudes with electron and positron are unequal. There is, of
course, no apparent theoretical reason why such a charge conjugation invariance breaking mechanism
shouldn’t generate disparate corrections to the electron and positron masses. In fact, from the “laziest”
phenomenological standpoint, the simplest way to introduce charge conjugation invariance breaking into
our model field-theory Hamiltonian operator Ĥ(−↔+†)

F of Eq. (12c) is to insert into it exactly such a mass
difference δm between positron and electron,

Ĥ
(−↔+†)broken
F (δm) = 1

2

∫
d3r
∑2

i=1

∫
d3r′

∑2
j=1

[
((ψ−(r))i + (ψ†+(r))i)

†〈r|
(
Ĥ

(REL)
1
2

(−e,m−, [Aµ])
)
ij
|r′〉((ψ−(r′))j + (ψ†+(r′))j)+

((ψ+(r))i + (ψ†−(r))i)
†〈r|
(
Ĥ

(REL)
1
2

(+e,m− + δm, [Aµ])
)
ij
|r′〉((ψ+(r′))j + (ψ†−(r′))j)

]
.

(12d)

This simple-minded model of charge conjugation invariance breaking drives home the point that in
the absence of the theoretically ill-founded Klein-Gordon and Dirac equations—with their unphysical
free particles of unboundedly negative energies (amongst a plethora of other unphysical features), upon
which is further erected, via the mind-boggling assumption of compulsory negative-energy free-particle
travel backwards in time, the “species identity” of antiparticle with particle which implies their perfect
mass equality and the CPT theorem—there is simply no compelling reason whatsoever to expect the
exact equality of particle and antiparticle masses. On the contrary, it would be entirely unexpected for
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the breaking of particle-antiparticle symmetry to fail to naturally split particle and antiparticle masses.
Thus the embrace of the correspondence principle in relativistic quantum theory removes that discipline’s
categorical incompatibility with the preliminary MINOS finding of a mass difference between muon an-
tineutrino and neutrino [1, 2]—as well as removing the CPT theorem and the configuration-regime locality
of relativistic quantum field theory.

The relativistic quantum electrodynamics implied by embrace of the correspondence principle clearly
differs in detail from the “orthodox” discipline bearing that name, with the pervasive influence of the
“minimally coupled” Dirac Hamiltonian operator obviously supplanted by the Hamiltonian operators
Ĥ

(REL)
1
2

(∓e,m−, [Aµ]) that feature in Eq. (12c) above. The disagreement between the electronic hydrogen
and muonic hydrogen approaches to measuring the charge radius of the proton [4], with their differing
degrees of dependence on calculated quantum electrodynamics contributions, might turn out to be a
harbinger of the need to reposition relativistic quantum electrodynamics firmly on the foundation of the
correspondence principle.

Conclusion

An immense amount of work will need to be carried out in order to give birth to a comprehensive
relativistic quantum electrodynamics (or other relativistic quantum field theory) that is properly founded
on the correspondence principle. The proximate task is to upgrade the model field-theory Hamiltonian
operator Ĥ(−↔+†)

F of Eq. (12c) to accommodate the quantized electromagnetic potential. This is a tricky
undertaking: because electromagnetism is a gauge theory, only a part of it is dynamical and quantizable,
but its nondynamical, nonquantizable potential part still has physical consequences, while relativistically
compatible gauge fixing is needed to block spurious unphysical consequences [16]. After electromagnetism
has been (hopefully) successfully dealt with, the “Feynman rules” threaten to be a tangled web indeed:
the H(REL)

EM; 12
(r,P, t) schematically given by Eq. (11g) can itself only be obtained iteratively, and, even

that aside, its square root structure, taken in conjunction with Eq. (11f), already guarantees that it
depends on the electron charge e− to arbitrarily high order. To this must be added the requirement of its
Born-Jordan quantization to obtain Ĥ(REL)

1
2

(e,m, [Aµ]), on top of which comes perturbative development
of the consequent quantum field theory in order to calculate transition amplitudes! There can be no
question that sustained, patient and ingenious efforts by many contributors over a very extended period
of time will be essential to obtaining results from relativistic quantum electrodynamics founded on the
correspondence principle.
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