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Abstract 
With an exponential model including the gravitational constant as a time dependent parameter a 

mass function is derived where elementary particle masses are combined and related. The proton 

mass mp is derived as a function of the electron mass me and fine structure constant α as 

mp=1,672621∙10
-27

 kg (1,672622∙10
-27

 kg, Δm/m=6∙10
-7

), the measured mass and the relative 

deviation of both are in brackets. The neutron mass then is calculated as a function of mp and α 

as mn=1,67492745 ∙10
-27

 kg (1,67492747 ∙10
-27

 kg, Δm/m≈10
-8

). The tau mass is expressed as a 

function of mp and me resulting in mτ=3,16750∙10
-27

 kg (3,16750∙10
-27

 kg, Δm/m≈10
-5

). The 

results for the neutron and tau are within the estimated standard deviation of the experimental 

values. 
 
Keywords: Hypothetical particle, physics model , composite models, cosmology. 
 
 
1. Introduction 
 

The precise prediction and calculation of elementary particle masses still is not covered by any 

theory, e.g. the standard model. Even though the mechanisms that provide the specific particle 

masses are thought to be understood and confirmed by the discovery of the Higgs boson, a clue 

to why elementary particles have their specific mass values would be of great importance for our 

understanding of quantum objects and matter. A correlated unresolved issue is why and how 

nature offers such a wide scale of masses from neutrinos to galaxies and the observable universe 

itsself. This paper attempts to provide an approach to elementary particle masses by constructing 

an exponential model that covers the mass scale of the observable universe and allows to 

calculate the proton and neutron masses with an accuracy of 6 resp. 8 decimal digits. As a 

premise the gravitational constant G is assumed to be a function of time G(t) proportional to 1/t, 

compatible with Dirac´s conclusions from the Large Number Hypothesis LNH [8]. As a result a 

set of mass dependend integers is observed and introduced. The relation of particle masses and 

integer values has already been pointed out by the formula of Koide [5] for lepton masses. It is 

compared with the result for the tau mass calculated with the appoach of this paper. 

 
 
2. The Exponential Model 
 

Estimations based on measurements of the mass and radius of the observable universe result in a 

ratio of these values that about matches the conditions of a black hole. Here the mass relates to 

the so far observable ordinary baryonic matter, thus not including dark matter nor dark energy. 

Within a space of a given radius the smallest rest mass greater zero that can be observed corre-

sponds to a Compton wavelength that is of the order of that radius. In this model the observable 

mass mU of the universe and the such defined smallest mass mγ inside are fitted by an 
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exponential approach. The largest possible wavelength of a particle with mass mγ thus is of the 

order of the radius of the universe, which is proportional to mU. Assuming that the reduced 

compton wavelength rC of mγ is equal to the gravitational radius rG of the universe, then 
 

𝑟𝑐 =
ℏ

𝑚𝛾𝑐
=  

𝐺𝑚𝑢

𝑐2
= 𝑟𝐺 (2.0a) 

 

 𝑚𝑝𝑙 = √ℏc

𝐺
 ,     𝑟𝑝𝑙 = √

ℏ𝐺

𝑐3
   →    𝑚𝛾 ∙ 𝑚𝑢 = 𝑚𝑝𝑙

2  (2.0b) 

 

where mpl, rpl are the Planck mass and lenght resp. with the gravitational constant G, Planck´s 

constant ħ and the speed of light c [1]. The observable horizon of the universe is the 

Schwarzschildt radius rS=2rG. The initial mass of the exponential model is the Planck mass. To 

obtain an exponential scaling the Planck mass is multiplied by successive factors to obtain first 

the masses for the stable particles proton resp. electron.  

 

The first step results in the proton mass mp 
 

𝑚𝑝 = 𝑚𝑝𝑙

𝑚𝑝

𝑚𝑝𝑙
  

followed by the electron mass me 

 

𝑚𝑒 = 𝑚𝑝𝑙

𝑚𝑝

𝑚𝑝𝑙
 
𝑚𝑒

𝑚𝑝
  

and finally the smallest mass mγ 

 

𝑚𝛾 = 𝑚𝑝𝑙

𝑚𝑝

𝑚𝑝𝑙
 
𝑚𝑒

𝑚𝑝
 (

𝑚𝑥

𝑚𝑝𝑙
)

𝑛

= 𝑚𝑒 (
𝑚𝑥

𝑚𝑝𝑙
)

𝑛

 (2.1a) 

 
where n is an integer and mx a mass to be determined. For mU it follows with Eq. (2.0b) 
 

 𝑚𝑢 =
𝑚𝑝𝑙

2

𝑚𝛾
     →     𝑚𝑢 =

𝑚𝑝𝑙
2

𝑚𝑒
(

𝑚𝑝𝑙

𝑚𝑥
)

𝑛

 (2.1b) 

For mx=mp and n=2 the result for mU and the approximate age t0=rS/c of the observable universe 

is 
 

𝑚𝑢 = 8,805 ∙ 1052𝑘𝑔   (≈ 1053𝑘𝑔) ,        𝑡0 = 13,822 ∙ 109 𝑎   (13,799 ± 0,021 ∙ 109 𝑎) 
 
This is in agreement with measurements of the mass and radius resp. the age [7] of the 
observable universe, where the measured values are in brackets. Now mU and mγ are defined as 
 

𝑚𝛾 =
𝑚𝑒𝑚𝑝

2

𝑚𝑝𝑙
2 (𝐺(𝑡))

 (2.2a) 
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   𝑚𝑢 =
𝑚𝑝𝑙

4 (𝐺(𝑡))

𝑚𝑒𝑚𝑝
2  (2.2b) 

The model mass mU is assumed to always fulfil the mass radius relation of Eq. (2.0a). Provided 

the radius of the universe increases with time, mU is less for a smaller radius in the past and there 

is no singularity at an initial radius r0 that exceeds the mass radius relation of Eq. (2.0a). But with 

Eq. (2.2b) this implies that the Planck mass cannot be a time independent constant, when 

assuming that the particle masses me and mp are constant. 
 

Here it is assumed that the gravitational constant G is a parameter G(t) that was larger in the past. 

Thus the Planck mass mpl(G(t)) and mU(mpl) were smaller. The time dependencies of G(t) and 

mU(t) are compatible with the conclusions from the LNH, see Appendix C. For mU(t) beeing 

smaller in the past, there is eventually a condition reached when it is equal to the smallest 

observable mass mγ(t), which is referred to as the state of equilibrium. This state is derived and 

analysed.  
 
 
3. State of Equilibrium 
 

The state of equilibrium is defined by mE=mγ=mU. Since the smallest observable mass mγ cannot 

exceed the mass of the universe mU, it is the initial state of the model. In the following mpl, rpl 

and G0 are the present values of Planck mass, Planck length and gravitational constant, whereas 

mpl(Gx) and rpl(Gx) are the values for a specific Gx. With Eq. (2.0b) it follows mpl(GE)=mE and 

then for this state the gravitational radius is equal to the Planck length. Setting Eqs. (2.2a) and 

(2.2b) equal results in: 
 

𝑚𝑢 = 𝑚𝛾  →    𝑚𝑝𝑙
6 (𝐺𝐸) = (𝑚𝑒𝑚𝑝

2)
2

, 

then 

𝑚𝐸 = 𝑚𝑝𝑙(𝐺𝐸) = (𝑚𝑒𝑚𝑝
2)

1
3   (3.0) 

 

This result is independent of the definition of the Planck mass in Eq. (2.0b), which may vary 

depending on it´s derivation. Inserting mE for mpl into Eqs. (2.2a) and (2.2b) yields 

 

𝑚𝐸 = 𝑚𝑝𝑙(𝐺𝐸) = 𝑚𝑢 = 𝑚𝛾 = (𝑚𝑒𝑚𝑝
2)

1
3 (3.1) 

Then with Eq. (2.0b) 
 

𝐺𝐸 =
ℏc

𝑚𝑝𝑙
2 (𝐺𝐸)

=
ℏc

(𝑚𝑒𝑚𝑝
2)

2
3

=   𝐺0

𝑚𝑝𝑙
2

(𝑚𝑒𝑚𝑝
2)

2
3

  (3.2) 

 
and 

  𝑟𝐸 = √
ℏ𝐺𝐸

𝑐3
  =

ℏ

𝑐(𝑚𝑒𝑚𝑝
2)

1
3

= 𝑟𝑝𝑙

𝑚𝑝𝑙

(𝑚𝑒𝑚𝑝
2)

1
3

   

The equilibrium values are: 
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𝐺𝐸 = 1,694 ∙ 1030  
𝑚3

𝑘𝑔 𝑠2
 ,  𝑟𝐸 = 2,575 ∙ 10−15 𝑚 ,  𝑚𝐸 = 1,365929 ∙ 10−28 𝑘𝑔 (3.3) 

 
The equilibrium mass mE is smaller than the muon, between the electron and proton masses. To 
roughly estimate the ratio of the strength of gravitational to electromagnetic interaction at 
equilibrium, the interaction of two masses mE/2 is compared with the interaction of two 
elementary charges e: 
 

𝑒2

4𝜋𝜀0𝐺𝐸
𝑚𝐸

2

4

=
4𝑒2

4𝜋𝜀0ℏ𝑐
= 4𝛼 ≈ 0,03  

 
At equilibrium the gravitational and electromagnetic interaction converge and the spatial size of 
the model mass mU is with rS=2rE of the order of a proton.  
 
 
4. Composition of the Equilibrium Mass 
 

When mU is of the order of mE and thus exhibits the mass and size properties of an elementary 

particle, the value for G(t) is too large to neglect binding energy effects. It is assumed that within 

the space of mU there is a constituent mass mb  as well as it´s self resp. binding energy mSc
2
. 

Futher it is assumed that there is an energy resp. mass contribution mQ from an elementary 

charge e distributed over the sphere of mU. Thus a general approach for the energy resp. mass 

content of mU is made. With Eq. (2.2b) it follows: 
 

𝑚𝑢 =
𝑚𝑝𝑙

4 (𝐺𝑢)

𝑚𝑒𝑚𝑝
2 = 𝑚𝑏 + 𝑚𝑠 + 𝑚𝑄 + 𝑚𝛼 (4.0a) 

 
where mα resembles a second order correction term. The binding energy mSc

2
 is  

 

𝑚𝑠𝑐2 =
3

5
𝐺𝑢

𝑚𝑏
2

𝑟𝑐(𝑚𝑏)
 ,   𝑟𝑐(𝑚𝑏) =

ℏ
𝑚𝑏𝑐

 

 

then with Eqs. (2.0a) and (2.0b) 

 

𝑚𝑠 =
3

5

𝑚𝑏
3

𝑚𝑝𝑙
2 (𝐺𝑢)

 (4.0b) 

and 
 

𝑚𝑄𝑐2 =
𝑒2

8𝜋𝜀0𝑟𝑐(𝑚𝑏)
= 𝛼𝐺𝑢

𝑚𝑝𝑙
2

2𝑟𝑐(𝑚𝑏)
   →     𝑚𝑄 =

𝛼

2
𝑚𝑏 , (4.0c) 

 
and 

𝑚𝛼 = 𝑚𝑏𝜉𝛼2 , 𝛼 =
𝑒2

4𝜋𝜀0ℏ𝑐
 (4.0d) 

 
where ξ is a constant to be determined later. Then mU is 
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𝑚𝑢 =
𝑚𝑝𝑙

4 (𝐺𝑢)

𝑚𝑒𝑚𝑝
2 = 𝑚𝑏𝑐𝛼 +

3

5

𝑚𝑏
3

𝑚𝑝𝑙
2 (𝐺𝑢)

 (4.1) 

with 

𝑐𝛼 = (1 +
𝛼

2
+ 𝜉𝛼2)  

 
Rearranging Eq. (4.1) yields 
 

𝑚𝑝𝑙
6 (𝐺𝑢) − 𝑚𝑝𝑙

2 (𝐺𝑢)𝑚𝑒𝑚𝑝
2𝑚𝑏𝑐𝛼 =

3

5
𝑚𝑒𝑚𝑝

2𝑚𝑏
3 (4.2) 

The solution of this equation [4] is  
 

𝑚𝑝𝑙(𝐺𝑢) = 3−
1
4 10−

1
6  (𝑌 +

10
2
3𝑚𝑒𝑚𝑝

2𝑚𝑏𝑐𝛼

𝑌
)

1
2

 (4.3a) 

where 
 

𝑌 = ( 𝑚𝑒𝑚𝑝
2𝑚𝑏 (3

5
2𝑚𝑏

2 + (243𝑚𝑏
4 − 100𝑚𝑒𝑚𝑝

2𝑚𝑏𝑐𝛼
3)

1
2))

1
3

 
(4.3b) 

 
A lower limit for mb is defined by the square root within Y, hence 
 

243𝑚𝑏
4 − 100𝑚𝑒𝑚𝑝

2𝑚𝑏𝑐𝛼
3 = 0  

 

resulting in 

 𝑚𝑏 = (
100

243
𝑚𝑒𝑚𝑝

2)

1
3

𝑐𝛼 (4.4) 

 
Inserting mb into Eq. (4.3b) yields 
 

𝑌 = ( 3
5
2

100

243
(𝑚𝑒𝑚𝑝

2)
2

)

1
3

𝑐𝛼 

 
 
Inserting Y into Eq. (4.3a) is a straightforward calculation and yields 
 

𝑚𝑝𝑙(𝐺𝑢) = (2 (
10

81
)

1
3

𝑐𝛼)

1
2

(𝑚𝑒𝑚𝑝
2)

1
3 (4.5) 

 
For the condition of equilibrium (Eq. (3.1)) the Planck mass in Eq. (4.5) is set equal to the 
equilibrium mass mE in Eq. (3.0): 
 

𝑚𝑝𝑙(𝐺𝑢) = 𝑚𝑝𝑙(𝐺𝐸) = (𝑚𝑒𝑚𝑝
2)

1
3 
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yielding 

𝑐𝛼 =
1

2
(

10

81
)

1
3

= 1,004149 

 

(4.6) 

 
Inserting this into Eq. (4.4) results in 
 

 𝑚𝑏 = (
5

12
)

1
3

(𝑚𝑒𝑚𝑝
2)

1
3 = 1,020214 ∙ 10−28 𝑘𝑔  

 

(4.7a) 

 
which is about half the muon mass. Eq. (4.4) is rewritten by defining 
 

𝑚𝑐 =  𝑚𝑏(𝑐𝛼 = 1) = (
100

243
𝑚𝑒𝑚𝑝

2)

1
3

= 1,015998 ∙ 10−28 𝑘𝑔  (4.7b) 

 
resulting in 

 𝑚𝑏 = 𝑚𝑐 (1 +
𝛼

2
+ 𝜉𝛼2) (4.7c) 

 

The general approach to particle masses is the equilibrium mass in Eq. (3.0). To solve Eq. (4.7c) 

for the proton mass mp the equilibrium mass will be generalized. 
 
 
5. The Generalized Equilibrium Mass 
 
The equilibrium mass in Eq. (3.0) is utilized for finding dependencies between elementary 
particle masses. Expressing it in units of the electron mass me results in 
 

(𝑚𝑒𝑚𝑝
2)

1
3

𝑚𝑒
= (

𝑚𝑝

𝑚𝑒
)

2
3

= 149,947  

 

 

 
Replacing the proton by the neutron mass results in 
 

(𝑚𝑒𝑚𝑛
2)

1
3

𝑚𝑒
= (

𝑚𝑛

𝑚𝑒
)

2
3

= 150,085 

 

 

 
Thus both values group around the integer value 150. The relation of particle masses and integer 
values have already been pointed out by other authors such as Koide [5] with his pure empirical 
though astonishing precise and profound formula for lepton masses (see Appendix B). To 
evaluate whether the integer value for the proton resp. neutron mass is a random result, the 
electron resp. proton mass in Eq. (3.0) are replaced by other elementary particle masses. Here the 
lepton and meson masses smaller than the proton, the proton p, neutron n and the tau τ are 
applied, since this will be sufficient for the derivation of the proton mass. The elementary 
particles smaller than the proton are the electron e, muon μ, pions π0+, kaons k+0, the eta η, rho 
ρ, omega ω and K

*
+0, see Appendix A and [1,2]. The equilibrium mass is generalized as 
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𝑚´(𝑖, 𝑗) = (𝑚𝑖𝑚𝑗
2)

1
3 (5.0a) 

 
Every particle combination i, j is assigned a mass m´. The results for setting j=n and j=p resp. 

then relate the proton, neutron, pion, kaon, ω and η masses, where the measured values are in 

brackets: 

 

𝑚𝐾+ = (𝑚𝜋0𝑚𝑛
2)

1
3   = 8,772 ∙ 10−28 𝑘𝑔   (8,801 ∙ 10−28 𝑘𝑔) (5.0b) 

  𝑚𝐾0  = (𝑚𝜋+𝑚𝑛
2)

1
3  = 8,871 ∙ 10−28 𝑘𝑔   (8,871 ∙ 10−28 𝑘𝑔)  

  𝑚𝜔   = (𝑚𝜂𝑚𝑝
2)

1
3     = 1,398 ∙ 10−28 𝑘𝑔   (1,395 ∙ 10−28 𝑘𝑔)  

 
It is notable that the kaons and the adjacent pions are related pairwise and that ω is the 

equilibrium mass of the adjacent η with j=p. This approach is now investigated for i=e. Every 

elementary particle j is assigned a mass m´(e,j) and a mass number N(j), which is the ratio of 

m´(e,j) and the electron mass. 

 

𝑁(𝑗) =
(𝑚𝑒𝑚𝑗

2)
1
3

𝑚𝑒
= (

𝑚𝑗

𝑚𝑒
)

2
3
 

 

(5.1) 

 
The results are shown in Fig. 1. where the μ, pion π+, the symmetric grouping of the kaons, K

*
+ 

and p, n build up an integer scheme. Thus the particles values N(j) are supposed to group around 

a scheme of integers and are assigned these integers: 
 
N(μ) = 35   (34,967)    
N(π0+) = 42   (41,168 and 42,097)  
N(K+0) = 98   (97,727 and 98,246) 
N(η) = 105 (104,753) 
N(ρ,ω) = 133 (132,374 and 132,871) 
N(K

*
+0) = 145 (144,939 and 145,389) 

N(p,n) = 150 (149,947 and 150,085 
 
 
 
      e                                  μ    π                                                    K    η                         ρ ω       K

*
 p n  

 

 
      1                                    35    42                                                       98   105                         133     145  150 

 
 
Fig.1. N(j) for elementary particles from electron to neutron 

 
 
 

Every mass m´(e,j) in the range N(j)=35...133 is located at an integer value N(j)=7n. 

 
𝑁(𝑗) = 7𝑛 ,     𝑛 = 5,6,14,15,19 (5.2) 
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The proton is assigned N(p)=150 i.e. a mass m´(e,p) which is equal to the equilibrium mass mE 
in Eq. (3.0). In addition there is an exponential scaling for particle masses by an factor fN to be 
applied in the calculation of the neutron mass. For the range of particles from pion to tau: 
 

𝑓𝑁 = (𝑚´(𝑒, 𝜏) 𝑚´(𝑒, 𝜋+)⁄ )
1
4 = 1,528065 (5.3a) 

 
Then within an error of ≈10

-3
: 

 
N(π0+) fN  = 64,18 = N(g), which is within the gap between π´s and K´s                         (5.3b) 
N(g) fN  = N(K+0) 
N(K+0) fN = N(p,n) 
N(p,n) fN   = N(τ) = 229,52 
 
The reason for this exponential behavior can be approached by assigning each particle a 
generalized equilibrium mass m´(i,e) with the properties 
 

𝑀(𝑖) =
(𝑚𝑖𝑚𝑒

2)
1
3

𝑚𝑒
= (

𝑚𝑖

𝑚𝑒
)

1
3

= 𝑁(𝑖)
1
2 

 

(5.4) 

 
M(π0+) = 6,48074  
M(g) = 8,01116 
M(K+0) = 9,89949 
M(p,n)   = 12,2474 
M(τ)   = 15,1498 
 
Then the following observation can be made: 
 
 
 
                             M(g)                     M(K+0)                 M(p,n)                   M(τ) 

  phi≈0,618 

     2M(π0+)                 2M(g)                 2M(K+0)               2M(p,n) 
 
 
Fig.2. Ratios of M(i)´s for elementary particles from pions to tau 
 
 
 
Successive ratios of an M-value and twice the preceeding M-value approach with values between 
0,61786 and 0,61859 the golden ratio phi=0,618034 as shown in Fig. 2, which is the perfect ratio 
of resonances. These perfect proportions already have been found in experiments observing other 
quantum mechanical systems e.g. quantum phase transitions in atomic chains [3]. Then the ratio 
of M(i)´s is fM≈2phi and with Eq. (5.4) 
 

𝑓𝑁 = 𝑓𝑀
2 ≈ (2𝑝ℎ𝑖)2 = 1,527864 

(5.5) 

which is consistent with Eq. (5.3a). With Eq. (5.1) particles m´ resp. N ratios are expressed as 

integer ratios which can be related to each other: 
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𝑁(𝑖1)

𝑁(𝑗1)
= 𝑢

𝑁(𝑖2)

𝑁(𝑗2)
 (5.6) 

 

where u is a rational resp. integer number. An obvious example for the μ, the π´s and p,n is 

 
150

35
= 𝑢

42

98
 , 𝑢 = 10 

 

With these approaches and results the proton mass can be calculated as a function of the electron 

mass. 
 
 
6. Calculation of the Proton Mass 
 

In Chapter 4 the mass mb in Eq. (4.7c) has been derived, which is a component of the 

equilibrium mass and now defined as a mass m´(e,j). Then according to Eqs. (5.1) and (5.2) mb is 

assigned a mass number N(b)=7n. 

 

Thus Eq. (4.7c) becomes 

 

𝑁(𝑏)𝑚𝑒 = 𝑚𝑐 (1 +
𝛼

2
+ 𝜉𝛼2) (6.0) 

 
The closest value m´ of a particle to mb in Eq. (4.7a) is the η with n=15: 
 

𝑚𝜂 = 9,767 ∙ 10−28𝑘𝑔 

and 

 
𝑚´(𝑒, 𝜂) = 9,543 ∙ 10−29𝑘𝑔 ,   𝑁(𝜂) = 105 

 
 
The next possible mass number is N(b)=7n, n=16, thus 
 

𝑁(𝑏) = 112 (6.1) 

 
The second order contribution mcξα

2 
is solved in a seperate approach independently of Eq. (5.0). 

Considering Eq. (5.1), then Eq. (5.6) is rewritten as 
 

𝑛1

𝑛2
= 𝑁(𝑗2)

𝑁(𝑖1)

𝑁(𝑗1)
= 𝑢

𝑚´(𝑒, 𝑖2)

𝑚𝑒
 (6.2a) 

 
where n1 and n2 are integers. Since mcξα

2
 also is assumed to be a mass m´(e,j), the approach is 

 
𝑛1

𝑛2
= 𝑢

𝑚𝑐𝜉𝛼2

𝑚𝑒
 (6.2b) 

and 
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𝑛1

𝑛2
𝑚𝑒 = 𝑢𝑚𝑐𝜉𝛼2 = 𝑚𝑐 𝜉´(𝑢𝛼)2 , 𝜉´ =  

𝜉

𝑢
 (6.2c) 

 

where the right side of the equation is a second order correction term with a constant ξ´ to be 

determined. The number u is assumed to be an integer similar to common fine structure 

corrections which are of the order (uα)
2
. With the results of Eq. (5.1), me is considered a 

constituent mass of the generalized equilibrium masses m´(e,j). The left side of Eq. (6.2c) is 

assumed to be proportional to a self energy contribution of the electron, which is proportional to 

3/5 and to me. This is evident when replacing mb by me in Eq. (4.0b) and since the Planck mass 

in the self energy term is proportional to me. 
 
Then from Eq. (6.2c) it follows 
 

𝑢𝜉𝛼2 = 𝜉´𝑢2𝛼2 =
3

5

𝑚𝑒

𝑚𝑐
   →    𝜉´𝑢2 =

3

5𝛼2

𝑚𝑒

𝑚𝑐
 (6.3) 

 
Solving Eq. (6.3) by inserting mc from Eq. (4.7b) results in ξ´u

2
=101,02. In a first approach the 

combination with the best fitting integer 
 

𝑢 = 𝑛3 = 10 ,     𝜉´ = 1,0102 (6.4) 

is utilized to solve Eq. (6.3). The second order term in Eq. (6.0) now is 
 

𝜉𝛼2 =
3

5𝑛3

𝑚𝑒

𝑚𝑐
 (6.5) 

 

which yields 

𝑁(𝑚𝑏)𝑚𝑒 = 𝑚𝑐 (1 +
𝛼

2
+

3

5𝑛3

𝑚𝑒

𝑚𝑐
)  (6.6) 

 
Inserting N(b) and n3 yields 

112𝑚𝑒 = 𝑚𝑐 (1 +
𝛼

2
+

3

50

𝑚𝑒

𝑚𝑐
) 

 
Besides the integers in Eq. (4.4) resulting from the solution of Eq. (4.2) the proton mass depends 
on two integers N(b)=112 and n3=10 as a result of the quantisation approach in chapter 5. 
Solving Eq. (6.6) for mp with Eq. (4.7b) yields 

(112 −
3

50
) 𝑚𝑒 = (

100

243
𝑚𝑒𝑚𝑝

2)

1
3

(1 +
𝛼

2
) 

or 

𝑚𝑝 = (
243

100
)

1
2

(2 (112 −
3

50
))

3
2

(2 + 𝛼)−
3
2𝑚𝑒 (6.7) 

and with defining 

𝑐𝑚 = (
243

100
)

1
2

(2 (112 −
3

50
))

3
2

= 5,2218703 ∙ 103  

then 
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𝑚𝑝 = 𝑐𝑚(2 + 𝛼)−
3
2𝑚𝑒 = 1,672621 ∙ 10−27𝑘𝑔  (1,672622 ∙ 10−27𝑘𝑔)  (6.8) 

 
where the measured mass is in brackets, see Appendix A. 
 
 
7. Calculation of the Neutron Mass 
 

The factor fN in chapter 5 provides an exponential scaling of particle masses but no precise re-

sults as for the proton mass in chapter 6. But the assumption is that this is a function of the mass 

difference involved, i.e. that for small scales resp. mass differences the precision increases. To 

verify the splitting of the neutron and proton mass is now approached with the principles previ-

ously deployed. With Eqs. (4.0c) and (6.0) it is assumed that the splitting is proportional to α and 

mp. Then with Eq. (6.2a) a related approach is 

 
𝑛1

𝑛2
(𝑚𝑛 − 𝑚𝑝) ∝ 𝛼𝑚𝑝 = 𝑓𝑁

3
2𝛼𝑚𝑝 

(7.0) 

 

where according to Eqs. (5.2) and (5.6) n1 and n2 are assumed to be from the set of mass numbers 

and integers in the previous chapters, thus the number of possible combinations is limited. The 

factor fN from Eq. (5.3a) has been adjusted with the correct exponent, since it relates to ratios of 

m´ and thus of N(j), but masses m are applied here. Then with Eq. (5.1) it follows  

𝑚𝑖

𝑚𝑗
= (

𝑁(𝑖)

𝑁(𝑗)
)

3
2

= 𝑓𝑁

3
2 = 1,8889163 

 
Considering the previous results, then a supposable combination from the set of integers resp. 
mass numbers is n1=n3 from the solution for the proton mass in Eq. (6.4) and n2=N(e)=1, result-
ing in 
 

𝑛3(𝑚𝑛 − 𝑚𝑝) = 𝑓𝑁

3
2𝛼𝑚𝑝 (7.1a) 

 
yielding a mass formula that with fN relates the pion, proton, neutron and tau masses 
 

𝑛3 =
𝑓𝑁

3
2𝛼𝑚𝑝

(𝑚𝑛 − 𝑚𝑝)
= 9,99993 ≈ 10 

(7.1b) 

 
Then solving for the neutron mass and inserting fN and n3=10 yields 
 

𝑚𝑛 = (
𝑓𝑁

3
2𝛼

𝑛3
+ 1) 𝑚𝑝 = 1,67492745 ∙ 10−27𝑘𝑔     (1,67492747 ∙ 10−27𝑘𝑔) 

 

(7.2) 

 
The factor fN from Eq. (5.3a) is the best fit for Eq. (5.3b). Replacing it by the theoretical value 
from the observation presented in Fig. 2 and Eq. (5.5) results in 
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𝑚𝑛 = (
(2𝑝ℎ𝑖)3𝛼

𝑛3
+ 1) 𝑚𝑝 = 1,6749270 ∙ 10−27𝑘𝑔 

 

(7.3) 

 

with an accuracy of seven decimal digits. Solving Eq. (7.2) for mp yields 

 

𝑚𝑝 = (
𝑓𝑁

3
2𝛼

𝑛3
+ 1)

−1

𝑚𝑛 = 1,67262191 ∙ 10−27𝑘𝑔    (1,67262190 ∙ 10−27𝑘𝑔 ) 

 

(7.4) 

 
The results of Eqs. (7.2) and (7.4) are within the standard deviation of the measured masses, see 
Appendix A. 
 
 
8. Calculation of the Tau Mass 
 

The results of Eq. (5.1) shown in Fig. 1. can be written as: 

 

𝑚´(𝑒, 𝑗) = (𝑚𝑒𝑚𝑗
2)

1
3 = 𝑁(𝑗)𝑚𝑒 (8.0) 

Here N(J) is the ratio of an equilibrium mass and the electron mass. The ratio of an equilibrium 

mass and the proton mass then is approached with 

 

𝑚´(𝑒, 𝑗) = (𝑚𝑒𝑚𝑗
2)

1
3 =

𝑚𝑝

𝐼(𝑗)
 (8.1) 

since m´(e,j) is smaller than mp in the considered mass range, where I(j) are integers. For j=τ an 

accurate result for the tau mass mτ is obtained: 

 

𝐼(𝜏) =
𝑚𝑝

(𝑚𝑒𝑚𝜏
2)

1
3

= 8,00006 ≈ 8 (8.2a) 

or 

(𝑚𝑒𝑚𝜏
2)

1
3 =

1

8
𝑚𝑝 (8.2b) 

yielding 

𝑚𝜏 = (
(

𝑚𝑝

8 )
3

𝑚𝑒
)

1
2

= 3,16750 ∙ 10−27𝑘𝑔   (3,16747 ∙ 10−27𝑘𝑔) 

 

(8.2c) 

 

Inserting mp from Eq. (6.8) yields 

 

𝑚𝜏 = (
𝑐𝑚

8
)

3
2

(2 + 𝛼)−
9
4𝑚𝑒 = 3,16750 ∙ 10−27𝑘𝑔  (8.3) 
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which is within the standard deviation of the measured mass in brackets, see Appendix A. For a 

comparison the formula of Koide in Appendix B is used to calculate the tau mass [4] as a 

function of the muon and electron mass with the result mτ =3,16773∙10
-27

 kg. The accuracy of 

both results in principle allows to equate the tau mass in Eq. (8.2c) and in the Koide formula to 

relate the proton, electron and muon masses. 

 
 
Discussion 
 

The proton, neutron and tau as well as meson masses in the range probed can be calculated by 

defining a generalized equilibrium mass as a combination of two particle masses. For particular 

equilibrium masses which are a function of the electron mass, quantum structures i.e. mass num-

bers can be observed which allow to relate elementary particle masses. The proton and neutron 

masses then are a function of the fine structure constant, the electron mass and integers resp. an 

exponential factor, which does not seem to be accidentally due to the accurate results of six resp. 

eight decimal digits. The exponential dependencies of mass numbers can be traced back to the 

golden ratio, but their origin remains unresolved. This result is similar to the empirical formula 

of Koide (Appendix B), which relates the e, μ, and τ masses with two integers only with the 

accuracy of four to five decimal digits. Zenczykowski [6] is pointing out that this does not seem 

to be an ‘accident’ and thus strongly suggests an algebraic origin of mass. For the exponential 

model of mass scales which is needed for the calculations, the gravitational constant becomes a 

parameter G(t) that was larger in the past and results in a strength converging with 

electromagnetic interaction at the proton sized elquilibrium state. The results suggest that the 

origin of the observed elementary particle masses is linked to fundamental constants, an inherent 

algebraic structure and that the constancy of the gravitational constant has to be questioned. 
 
 
Appendix A 
 

Elementary particle masses in kg from [1,2] 
 
me  = 9,10938356 ∙10

-31
 

mμ  = 1,8835316 ∙10
-28

 
mπ0 = 2,40618 ∙10

-28
 

mπ+ = 2,48807 ∙10
-28

 
mK+ = 8,8006 ∙10

-28
 

mK0 = 8,87078 ∙10
-28

 
mK+ = 8,8006 ∙10

-28
 

mη = 9,76653 ∙10
-28

 
mrho = 1,38203 ∙10

-27
 

mω = 1,39520 ∙10
-27

 
mp = 1,672621898(21)∙10

-27
 

mn = 1,674927471(214)∙10
-27

 
mτ = 3,16747(29) ∙10

-27 

 

The values in brackets are the estimated standard deviations of the last digits of the measured 
masses. 
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Appendix B 
 

The formula of Koide [5]: 
 

𝑄 =
𝑚𝑒 + 𝑚𝜇 + 𝑚𝜏

(√𝑚𝑒 + √𝑚𝜇 + √𝑚𝜏)
2 = 0,666659(10) ≈

2

3
 

 
The value of Q should be a random number, but it is exactly halfway between 1/3 when all 
lepton masses would be equal, and 1 when two masses would be neglectible, which suggests an 
unresolved physical meaning of the formula. 
 
 
Appendix C 
 

The time dependencies of G and mu derived by Dirac from the LNH [8], resulting in G 

proportional 1/t and mu proportional t
2
, are solutions of G(t) and mu(G) in Eqs. (2.0b) and (2.2b). 

In the following mpl(G0) and G0 are the present values of the Planck mass and gravitational 

constant, whereas mpl(Gx) is the value for a specific Gx. 

 
When mU was smaller by a factor x, then with Eq. (2.2b) 
 

𝑥𝑚𝑢 = 𝑥
𝑚𝑝𝑙

4 (𝐺0)

𝑚𝑒𝑚𝑝
2 =

(
ℏ𝑐
𝐺0

√𝑥)
2

𝑚𝑒𝑚𝑝
2 ,   𝑥 =

𝑚𝑥

𝑚𝑢
 

 

 

Then with Eqs. (2.0a) and (2.0b) it follows 

 

𝑚𝑝𝑙(𝐺𝑥) = (
ℏ𝑐

𝐺0
√𝑥)

1
2

   →    𝐺𝑥 =
𝐺0

√𝑥
   →    

𝐺𝑥

𝐺0
= √

𝑚𝑢

𝑚𝑥
= √

𝑟𝐺

𝐺0

𝐺𝑥

𝑟𝑥
  

and 

 

(
𝐺𝑥

𝐺0
)

2

=
𝑟𝐺

𝐺0

𝐺𝑥

𝑟𝑥
   →   

𝐺𝑥

𝐺0
=

𝑟𝐺

𝑟𝑥
 (A1) 

 

The solutions for G(t) thus depend on r(t). With Eq. (A1) and the approximation for the ages of 

the observable universe t0=2rG/c and tx=2rx/c resp. we get 

 

𝐺𝑥 = 𝐺0

𝑡0

𝑡𝑥
  →    𝐺 ∝

1

𝑡
  (A2) 

Inserting G from Eq. (A2) into Eqs. (2.0b) and (2.2b), then the mass of the universe is: 

 

𝑚𝑢 ∝
(

ℏ𝑐
𝑡−1)

2

𝑚𝑒𝑚𝑝
2 ∝ 𝑡2 
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These are the time dependencies of the gravitational constant and the mass of the universe 

concluded from LNH. 

 

 
Received September 12, 2016; Accepted September 18, 2016 

 

 

References 
 
1. CODATA Recommended Values 

2. PDG Particle Data Group 

3. Science 08 Jan 2010: Vol. 327, Issue 5962, pp. 177-180  

4. https://www.wolframalpha.com/examples/EquationSolving.html 

5. Koide Y, 1983 Phys. Lett. B 120 161  

6. Zenczykowski P, Journal of Physics: Conference Series 626 (2015) 012022 

7. Planck Collaboration (2015). "Planck 2015 results. XIII. Cosmological parameters 

    (See Table 4 on page 31 of PDF).". arXiv:1502.01589 

8. Dirac P (1974) "Cosmological Models and the Large Numbers Hypothesis". 

    Proceedings of the Royal Society of London A 338 (1615): 439–446. 

https://en.wikipedia.org/wiki/ArXiv
https://arxiv.org/abs/1502.01589

