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1. Introduction

The 2-variable Kampé de Fériet generalization of the Hermite polynomials [2] and [4] reads

Hn(x, y) = n!

[n2 ]∑
r=0

yrxn−2r

r!(n− 2r)!
(1.1)

These polynomials are usually defined by the generating function

ext+yt
2

=

∞∑
n=0

Hn(x, y)
tn

n!
(1.2)

and reduce to the ordinary Hermite polynomials Hn(x) (see [1]) when y = −1 and x is replaced by 2x.
Based on the definition and generating function above, we can define degenerate Hermite polynomials by
means of the generating function

(1 + λt)
x
λ (1 + λt2)

y
λ =

∞∑
n=0

Hn(x, y;λ)
tn

n!
(1.3)

where λ 6= 0. Since (1 + λt)
1
λ −→ et as λ −→ 0, it is evident that (1.3) reduces to (1.2). That is Hn(x, y)

limiting case of Hn(x, y;λ) when λ −→ 0.
By equating coefficients of tn on both the sides of (1.3), the following representation of Hn(x, y;λ) is
obtained

Hn(x, y;λ) = n!

[n2 ]∑
r=0

(−xλ )n−2r(− y
λ )r(−λ)n−r

r!(n− 2r)!
(1.4)

Since limλ−→0Hn(x, y;λ) = Hn(x, y), (1.1) is a limiting case of (1.4).

In [3], Carlitz, L introduced the degenerate Bernoulli polynomials defined by

t

(1 + λt)
1
λ − 1

(1 + λt)
x
λ =

∞∑
n=0

βn(x|λ)
tn

n!
(1.5)

1Correspondence: E-mail: waseem08 khan@rediffmail.com

ISSN: 2153-8301 Prespacetime Journal www.prespacetime.com

Published by QuantumDream, Inc.



Prespacetime Journal | June 2016 | Volume 7 | Issue 9 | pp. 1297-1305 1298

Khan, W. A., Degenerate Hermite-Bernoulli Numbers and Polynomials of the Second Kind

When x = 0, βn(λ) = β
(α)
n (λ, 0) are called the degenerate Bernoulli numbers.

Note that
lim
λ−→0

βn(x|λ) = Bn(x), (n ≥ 0).

Kim and Seo [7] introduced the degenerate Bernoulli polynomials of the second kind defined by

log(1 + λt)
1
λ

(1 + λt)
1
λ − 1

(1 + λt)
x
λ =

∞∑
n=0

Bn(x|λ)
tn

n!
(1.6)

When x = 0 in (1.6), Bn(λ) = Bn(0|λ) are called the degenerate Bernoulli numbers of the second kind.
Note that

lim
λ−→0

Bn(x|λ) = Bn(x)

where Bn(x) are called the Bernoulli polynomials (see [6, 8, 9]).

Pathan and Khan [8] introduced the generalized Hermite-Bernoulli polynomials of two variables HB
(α)
n (x, y)

defined by (
t

et − 1

)α
ext+yt

2

=

∞∑
n=0

HB
(α)
n (x, y)

tn

n!
(1.7)

which is essentially a generalization of Bernoulli numbers, Bernoulli polynomials, Hermite polynomials
and Hermite-Bernoulli polynomials HBn(x, y) introduced by Dattoli et al [4, p.386(1.6)] in the form(

t

et − 1

)
ext+yt

2

=

∞∑
n=0

HBn(x, y)
tn

n!
(1.8)

The Stirling number of the first kind is given by

(x)n = x(x− 1) · · · (x− n+ 1) =

n∑
l=0

S1(n, l)xl, (n ≥ 0) (1.9)

and the Stirling number of the second kind is defined by generating function to be

(et − 1)n = n!

∞∑
l=n

S2(l, n)
tl

l!
(1.10)

A generalized falling factorial sum σk(n;λ) can be defined by the generating function

∞∑
k=0

σk(n;λ)
tk

k!
=

(1 + λt))
(n+1)
λ − 1

(1 + λt)
1
λ − 1

, (see [10]) (1.11)

where limλ−→0 σk(n;λ) = Sk(n).

In this paper, we consider a degenerate Hermite-Bernoulli numbers and polynomials of the second kind

HBn(x, y|λ) and derive some identities and formulae related to Hermite-Bernoulli numbers and polyno-
mials of the second kind.

2. Degenerate Hermite-Bernoulli Polynomials of the Second Kind

Let us assume that λ, t ∈ Cp such that |λt|p < p−
1
p−1 . Then, we consider the degenerate Hermite-Bernoulli

polynomials of the second kind which are given by the generating function

log(1 + λt)
1
λ

(1 + λt)
1
λ − 1

(1 + λt)
x
λ (1 + λt2)

y
λ =

∞∑
n=0

HBn(x, y|λ)
tn

n!
(2.1)
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so that

HBn(x, y|λ) =

n∑
m=0

(
n
m

)
Bm(λ)Hn−m(x, y|λ) (2.2)

When x = y = 0 in (2.1), Bn(λ) = HBn(0, 0|λ) are called the degenerate Bernoulli numbers of the second
kind.
From (2.1), we note that

∞∑
n=0

lim
λ−→0

HBn(x, y|λ)
tn

n!
= lim
λ−→0

log(1 + λt)
1
λ

(1 + λt)
1
λ − 1

(1 + λt)
x
λ (1 + λt2)

y
λ =

∞∑
n=0

HBn(x, y)
tn

n!
(2.3)

Thus, we get
lim
λ−→0

HBn(x, y|λ) = HBn(x, y), (n ≥ 0) (2.4)

Theorem 2.1. For n ≥ 0, we have

HBn(x, y|λ) =

n∑
m=0

(
n
m

)
(−1)mm!

(m+ 1)
λmHβn−m(x, y|λ) (2.5)

Proof. Form (2.1), we have

log(1 + λt)
1
λ

(1 + λt)
1
λ − 1

(1 + λt)
x
λ (1 + λt2)

y
λ =

(
log(1 + λt

λt

)(
t

(1 + λt)
1
λ − 1

)
(1 + λt)

x
λ (1 + λt2)

y
λ

=

( ∞∑
m=0

(−1)m

m+ 1
λmtm

)( ∞∑
n=0

Hβn(x, y|λ)
tn

n!

)

=

∞∑
n=0

(
n∑

m=0

(
n
m

)
(−1)mm!

(m+ 1)
λmHβn−m(x, y|λ)

)
tn

n!
(2.6)

Comparing the coefficients of equations (2.1) and (2.6), we get the result (2.5).

Theorem 2.2. For n ≥ 0, we have

HBn(x, y|λ) =

n∑
m=0

(
n
m

)
Hβn−m(x, y|λ)λmDm(0) (2.7)

Proof. Since
∞∑
n=0

HBn(x, y|λ)
tn

n!
=

log(1 + λt)
1
λ

(1 + λt)
1
λ − 1

(1 + λt)
x
λ (1 + λt2)

y
λ (2.8)

=

(
t

(1 + λt)
1
λ − 1

)
(1 + λt)

x
λ (1 + λt2)

y
λ

(
log(1 + λt

λt

)

=

∞∑
n=0

Hβn(x, y|λ)
tn

n!

∞∑
m=0

Dm(0)
(λt)m

m!

where Dn(x) are Daehee polynomials defined by log(1+t)
t (1 + t)x =

∞∑
n=0

Dn(x) t
n

n! and Dn(0) = Dn are

Daehee numbers (see [5]).
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Replacing n by n−m in above equation and comparing the coefficient of tn, we get the result (2.7).

Theorem 2.3. For n ≥ 0, we have

n∑
m=0

HBm(x, y)λn−mS1(n,m) =

n∑
m=0

(
n
m

)
(−1)mm!

(m+ 1)
λmHβn−m(x, y|λ) (2.9)

Proof. Replacing t by 1
λ log(1 + λt) in (1.8), we have

log(1 + λt)
1
λ

(1 + λt)
1
λ − 1

(1 + λt)
x
λ (1 + λt2)

y
λ

=

∞∑
n=0

HBn(x, y)λ−n
1

n!
(log(1 + λt))n

=

∞∑
n=0

(
n∑

m=0

HBm(x, y)λn−mS1(n,m)

)
tn

n!
(2.10)

On the other hand
log(1 + λt)

1
λ

(1 + λt)
1
λ − 1

(1 + λt)
x
λ (1 + λt2)

y
λ

=

(
log(1 + λt)

λt

)(
t

(1 + λt)
1
λ − 1

(1 + λt)
x
λ (1 + λt2)

y
λ

)

=

( ∞∑
m=0

(−1)m

m+ 1
λmtm

)( ∞∑
n=0

Hβn(x, y|λ)
tn

n!

)

=

∞∑
n=0

(
n∑

m=0

(
n
m

)
(−1)mm!

(m+ 1)
λmHβn−m(x, y|λ)

)
tn

n!
(2.11)

By comparing the coefficients of tn on the right hand sides of the last two equations, we arrive at the
desired result.

Theorem 2.4. For n ≥ 0, we have

HBn+1(x+ 1, y|λ)− HBn+1(x, y|λ)

n+ 1
=

n∑
m=0

(
n
m

)
λm(−1)mm!

m+ 1
Hn−m(x, y|λ) (2.12)

Proof. By using the definition (2.1), we have

log(1 + λt)
1
λ

(1 + λt)
1
λ − 1

(1 + λt)
x+1
λ (1 + λt2)

y
λ − log(1 + λt)

1
λ

(1 + λt)
1
λ − 1

(1 + λt)
x
λ (1 + λt2)

y
λ

= log(1 + λt)
1
λ (1 + λt)

x
λ (1 + λt2)

y
λ

∞∑
n=0

[
HBn+1(x+ 1, y|λ)− HBn+1(x, y|λ)

n+ 1

]
tn

n!

=

∞∑
n=0

(
n∑

m=0

(
n
m

)
λm(−1)mm!

m+ 1
Hn−m(x, y|λ)

)
tn

n!
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Comparing the coefficients of tn, we get the result (2.12).

Theorem 2.5. For n ≥ 0 and d ∈ N, we have

HBn,λ(x, y) = dn−1
d−1∑
a=0

HBn

(
a+ x

d
, y|λ

d

)
(2.13)

Proof. From (2.1) in the form

∞∑
n=0

HBn,λ(x, y)
tn

n!
=

log(1 + λt)
1
λ

(1 + λt)
d
λ − 1

(1 + λt2)
y
λ

d−1∑
a=0

(1 + λt)
a+x
λ

=
1

d

(
d−1∑
a=0

log(1 + λt)
d
λ

(1 + λt)
d
λ − 1

)
(1 + λt)

d
λ
a+x
d (1 + λt2)

y
λ

=

∞∑
n=0

(
dn−1

d−1∑
a=0

HBn(
a+ x

d
, y|λ

d
)

)
tn

n!
, (d ∈ N)

Comparing the coefficients of tn, we get the result (2.13).

3. Implicit Formulae Involving Degenerate Hermite-Bernoulli Polynomials of the Second
Kind

The result of this section present implicit summation formulae for degenerate Hermite-Bernoulli polyno-
mials of the second kind as follows:

Theorem 3.1. The following implicit summation formula involving degenerate Hermite-Bernoulli poly-
nomials of the second kind HBn(x, y|λ) holds true:

HBn(x+ z, y + u|λ) =

n∑
s=0

(
n
s

)
HBn−s(x, y|λ)Hs(z, u|λ) (3.1)

Proof. We replace x by x+z and y by y+u in (2.1), use (1.3 ) and rewrite the generating function as

log(1 + λt)
1
λ

(1 + λt)
1
λ − 1

(1 + λt)
x+z
λ (1 + λt2)

y+u
λ =

∞∑
n=0

HBn(x, y|λ)
tn

n!

∞∑
s=0

Hs(z, u|λ)
ts

s!

=

∞∑
n=0

HBn(x+ z, y + u|λ)
tn

n!
(3.2)

Now replacing n by n− s in l.h.s and comparing the coefficients of tn, we get the result (3.1).

Remark 1. By taking the limit as λ −→ 0 in (3.1), we have
Corollary 1.

HBn(x+ z, y + u) =

n∑
s=0

(
n
s

)
HBn−s(x, y)Hs(z, u) (3.3)

Theorem 3.2. The following implicit summation formula involving degenerate Hermite-Bernoulli poly-
nomials of the second kind HBn(x, y|λ) holds true:

HBn(x, y|λ) =

n−2j∑
m=0

[n2 ]∑
j=0

Bm(1|λ)(−x
λ

)n−m−2j(−λ)n−m−j(− y
λ

)j
n!

m!j!(n− 2j −m)!
(3.4)
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Proof. Applying the definition (2.1) to the term log(1+λt)
1
λ

(1+λt)
1
λ−1

and expanding the function (1+λt)
x
λ (1+λt2)

y
λ

at t = 0 yields

log(1 + λt)
1
λ

(1 + λt)
1
λ − 1

(1 + λt)
x
λ (1 + λt2)

y
λ =

( ∞∑
m=0

Bm(1|λ)
tm

m!

)( ∞∑
n=0

(−x
λ

)n
(−λt)n

n!

) ∞∑
j=0

(− y
λ

)j
(−λt2)j

j!



=

∞∑
n=0

(
n∑

m=0

(
n
m

)
Bm(1|λ)(−x

λ
)n−m(−λ)n−m

)
tn

n!

 ∞∑
j=0

(− y
λ

)j
(−λt2)j

j!


Replacing n by n− 2j, we have

∞∑
n=0

HBn(x, y|λ)
tn

n!

=

∞∑
n=0

n−2j∑
m=0

[n2 ]∑
j=0

(
n− 2j
m

)
Bm(1|λ)(−x

λ
)n−m−2j(−λ)n−m−j(− y

λ
)j

 tn

(n− 2j)!j!
(3.5)

Equating their coefficients of tn, we get the result (3.4).

Theorem 3.3. The following implicit summation formula involving degenerate Hermite-Bernoulli poly-
nomials of the second kind HBn(x, y|λ) holds true:

HBn(x, y|λ) =

n∑
m=0

(
n
m

)
(− z
λ

)n−m(−λ)n−mHBm(x− z, y|λ) (3.6)

Proof. By exploiting the generating function (2.1), we can write the equation

∞∑
n=0

HBn(x, y|λ)
tn

n!
=

log(1 + λt)
1
λ

(1 + λt)
1
λ − 1

(1 + λt)
x−z
λ (1 + λt2)

y
λ (1 + λt)

z
λ (3.7)

=

( ∞∑
m=0

HBm(x− z, y|λ)
tm

m!

)( ∞∑
n=0

(− z
λ

)n
(−λt)n

n!

)
Replacing n by n−m in above equation and equating their coefficients of tn leads to formula (3.6).

Theorem 3.4. The following implicit summation formula involving degenerate Hermite-Bernoulli poly-
nomials of the second kind HBn(x, y|λ) holds true:

HBn(x+ 1, y|λ) =

n∑
r=0

(
n
r

)
(− 1

λ
)r(−λ)rHBn−r(x, y|λ) (3.8)

Proof. By the definition of degenerate Hermite-Bernoulli polynomials of the second kind, we have

∞∑
n=0

HBn(x+ 1, y|λ)
tn

n!
+

∞∑
n=0

HBn(x, y|λ)
tn

n!
=

log(1 + λt)
1
λ

(1 + λt)
1
λ − 1

(1 + λt)
x
λ (1 + λt2)

y
λ ((1 + λt)

1
λ + 1)

=

( ∞∑
n=0

HBn(x, y|λ)
tn

n!

)( ∞∑
r=0

(− 1

λ
)r

(−λt)r

r!

)
+

∞∑
n=0

HBn(x, y|λ)
tn

n!
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=

∞∑
n=0

n∑
r=0

HBn−r(x, y|λ)(− 1

λ
)r(−λ)r

tn

(n− r)!r!
+

∞∑
n=0

HBn(x, y|λ)
tn

n!

Finally, equating the coefficients of the like powers of tn, we get (3.8).

4. Identities for Degenerate Hermite poly-Bernoulli Polynomials of the Second Kind

In this section, we give general symmetry identities for the degenerate Bernoulli polynomials of the sec-
ond kind Bn(x|λ) and the degenerate Hermite Bernoulli polynomials of the second kind HBn(x, y|λ) by
applying the generating function(1.6) and (2.1).

Theorem 4.1. Let a, b > 0 and a 6= b. For x, y ∈ R and n ≥ 0, the following identity holds true:

n∑
m=0

(
n
m

)
bman−mHBn−m(bx, b2y|λ)HBm(ax, a2y|λ)

=

n∑
m=0

(
n
m

)
ambn−mHBn−m,λ(ax, a2y|λ)HBm(bx, b2y|λ) (4.1)

Proof. Start with

g(t) =

(
(log(1 + λt)

a
λ )(log(1 + λt)

b
λ )

((1 + λt)
a
λ − 1)((1 + λt)

b
λ − 1)

)
(1 + λt)

abx
λ (1 + λt2)

a2b2y
λ (4.2)

Then the expression for g(t) is symmetric in a and b and we can expand g(t) into series in two ways to
obtain

g(t) =

∞∑
n=0

HBn(bx, b2y|λ)
(at)n

n!

∞∑
m=0

HBm(ax, a2y|λ)
(bt)m

m!

=

∞∑
n=0

(
n∑

m=0

(
n
m

)
an−mbmHBn−m(bx, b2y|λ)HBm(ax, a2y|λ)

)
tn

n!

On the similar lines we can show that

g(t) =

∞∑
n=0

HBn(ax, a2y|λ)
(bt)n

n!

∞∑
m=0

HBm(bx, b2y|λ)
(at)m

m!

=

∞∑
n=0

(
n∑

m=0

(
n
m

)
ambn−mHBn−m(ax, a2y|λ)HBm(bx, b2y|λ)

)
tn

n!

Comparing the coefficients of tn on the right hand sides of the last two equations, we arrive the desired
result.

Remark 1. By setting b = 1 in Theorem 4.1, we immediately following result
Corollary.

n∑
m=0

(
n
m

)
an−mHBn−m(x, y|λ)HBm(ax, a2y|λ)

=

n∑
m=0

(
n
m

)
amHBn−m(ax, a2y|λ)HBm(x, y|λ) (4.3)
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Theorem 4.2. For all integers a > 0, b > 0 and n ≥ 0, the following identity holds true:

n∑
k=0

(
n
k

)
an−kbkHBn−k(bx, b2z|λ)

k∑
i=0

(
k
i

)
σi(a− 1|λ)Bk−i(ay|λ)

=

n∑
k=0

(
n
k

)
akbn−kHBn−k(ax, a2z|λ)

k∑
i=0

(
k
i

)
σi(b− 1|λ)Bk−i(by|λ) (4.4)

where generalized falling factorial sum σk(n|λ) is given by (1.11).
Proof. We now use

g(t) =
(log(1 + λt)

a
λ )(log(1 + λt)

b
λ )((1 + λt)

ab
λ − 1)(1 + λt)

ab(x+y)
λ (1 + λt2)

a2b2z
λ

((1 + λt)
a
λ − 1)((1 + λt)

b
λ − 1)2

(4.5)

to find that

g(t) =

(
log(1 + λt)

a
λ

(1 + λt)
a
λ − 1

)
(1 + λt)

abx
λ (1 + λt2)

a2b2z
λ

(
(1 + λt)

ab
λ − 1

(1 + λt)
b
λ − 1

)
(

log(1 + λt)
b
λ

(1 + λt)
b
λ − 1

)
(1 + λt)

aby
λ (4.6)

=

∞∑
n=0

HBn(bx, b2z|λ)
(at)n

n!

∞∑
i=0

σi(a− 1|λ)
(bt)i

i!

∞∑
k=0

Bk(ay|λ)
(bt)k

k!

=

∞∑
n=0

(
n∑
k=0

(
n
k

)
an−kbkHBn−k(bx, b2z|λ)

k∑
i=0

(
k
i

)
σi(a− 1|λ)Bk−i(ay|λ)

)
tn

n!
(4.7)

Using a similar plan, we get

g(t) =

∞∑
n=0

(
n∑
k=0

(
n
k

)
akbn−kHBn−k(ax, a2z|λ)

k∑
i=0

(
k
i

)
σi(b− 1|λ)Bk−i(by|λ)

)
tn

n!
(4.8)

Finally equating the coefficients of tn on the right hand sides of last two equations, we desired result (4.4).

Theorem 4.3. For all integers a > 0, b > 0 and n ≥ 0, the following identity holds true:

n∑
k=0

(
n
k

)
akbn−k

a−1∑
i=0

HBk(bx+
b

a
i, b2z|λ)Bn−k(ay|λ)

=

n∑
k=0

(
n
k

)
an−kbk

b−1∑
i=0

HBk(ax+
a

b
i, a2z|λ)Bn−k(by|λ) (4.9)

Proof. From (4.6), g(t) can also be expanded as

=

( ∞∑
n=0

a−1∑
i=0

HBn(bx+
b

a
i, b2z|λ)

(at)n

n!

)( ∞∑
n=0

Bn(ay|λ)
(bt)n

n!

)
(4.10)

Using a similar plan, we get

g(t) =

( ∞∑
n=0

b−1∑
i=0

HBn(ax+
a

b
i, a2z|λ)

(bt)n

n!

)( ∞∑
n=0

Bn(by|λ)
(at)n

n!

)
(4.11)
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By comparing the coefficients of tn on the right hand sides of the last two equations, we arrive the desired
result.
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