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Abstract 
We discuss the situation of Aharonov–Bohm effect under self-duality condition of 

electromagnetic field, where there is no exact cancellation of the AB(t) phase shift because this 

phase shift is complex. This means that the time-dependent AB effect, magnetic AB phase shift 

is not canceled out by a phase shift coming from the Lorentz force with E=−∂tA. Our approach 

can be compared with the results obtained by other authors which have shown that AB(t) effect 

vanishes for Abelian electromagnetic plane waves. 
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1. Introduction 
 

The Aharonov–Bohm effect (AB) [1] has attracted great attention of theorists and experimenters 

for many years. The interest is caused because, in the theory of gauge fields, the popular belief is 

that only nontrivial field strength rather than the potentials themselves that are not gauge-

invariant can cause the observable effects. However, Aharonov and Bohm demonstrated that the 

integral of a gauge field along a closed loop can produce the observable effects; the effect 

produced by the magnetic potential was confirmed experimentally [2-4]. The AB effect is a 

purely quantum mechanical effect; the original (classified as Type-I) AB-phase shift exists in 

experimental conditions where the electromagnetic fields and forces are zero. It is the absence of 

forces that makes the AB effect entirely quantum mechanical. Although the AB-phase shift has 

been proved unambiguously, the absence of forces in Type-I AB-effects has never been 

exhibited [1, 2]. 

 

Recently, the AB effect with a time-dependent magnetic field has been investigated [5-11], to 

show that a cancellation of phases occurs in the AB effect with a time-dependent magnetic field. 

An extra phase coming from the electric field, E=−∂ tA, outside the solenoid cancels out the 

phase shift of the time-dependent magnetic field, i.e., an exact cancellation of the AB phase shift 

by means of the phase shift coming from the direct Lorentz force. In this framework, the time-
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dependent AB effect can be considered as another AB(t) effect. Indeed, the normal AB effects 

are in situations that a charged particle is moving through a region without magnetic and electric 

fields, while this AB(t) effects are when the charged particle develops an AB phase passing 

through a region of space with non-zero fields [10]. In [11] the authors have shown that AB(t) 

effect due to electromagnetic plane waves vanishes under some conditions in terms of the 

parameters of the system like frequency of the electromagnetic wave, the size of the space–time 

loop, and amplitude of the electromagnetic wave. In this paper we discuss the situation of 

Aharonov–Bohm effect under self-duality condition of electromagnetic field, where we have not 

an exact cancellation of the AB(t) phase shift.  

 

The outline of this paper is as follows. Section 2 presents a description of the self dual field 

configuration and in Sec. 3 we generalize the Abelian AB effect due to a time-dependent self 

dual Abelian field configuration. We prove that the AB phase factor no remains equal to zero up 

to the first order when considering the time-varying vector fields. In Sec. 4 we study the 

quantization of the magnetic flux in a superconducting ring under self-dual field configuration. 

Conclusions will be presented in the last Section. 

 

2. Self-dual electromagnetic field 

To the best of our knowledge, self-dual configurations of electromagnetic fields have not been 

considered in classical electrodynamics; it is instructive to consider self-dual fields in this 

simpler context. Our analysis will show the utility of this concept in problems of experimental 

interest, for which a stable quasilocalized configuration of the free electromagnetic field is likely 

to be relevant. We will obtain a field configuration similar to [12-14] but following an alternative 

route based on the idea of self-duality [15]. There are several reasons for considering self-dual 

fields in classical electrodynamics: Self-dual solutions are readily calculated and possess trivial 

energy-momentum properties, and the desired free field configurations are obtainable as 

superposition of self-dual and anti-self-dual constituents so that the resulting spectral properties 

may be easily controlled. 

To simplify our notation as much as possible, we choose the Gaussian system of units and set the 

speed of light equal to unity. An electromagnetic field is self-dual/anti-self-dual if: 

                                                                i E= B .                          (1) 

Is it possible to obtain equation (1)? The answer is yes, if we consider free electromagnetic fields 

governed by the homogeneous Maxwell equations with the operator 
c t




 transformed to 

http://www.sciencedirect.com/science/article/pii/S0370269316001003#br0100
http://www.sciencedirect.com/science/article/pii/S0370269316001003#br0110
http://www.sciencedirect.com/science/article/pii/S0370269316001003#se0020
http://www.sciencedirect.com/science/article/pii/S0370269316001003#se0030


Prespacetime Journal| May 2016 | Volume 7 | Issue 8 | pp. 1143-1149 
Torres-Silva, H., Domínguez-Pacheco, A., López-Bonilla, J. & López-Vázquez, R., Aharonov–Bohm Effect under Self-duality 
Condition of Electromagnetic Field 

 
ISSN: 2153-8301 Prespacetime Journal 

Published by  QuantumDream, Inc. 
www.prespacetime.com 

 

1145 

(1 T )
c t


 


 where T is the chiral factor and 1 T 1/ 2  ; under this condition E  is parallel 

to B : 

                                                   (1 T )
c t


  


E=- B ,                            (2) 

                                                               0 E ,                         (3) 

                                                   (1 T )
c t


  


B= E ,                        (4) 

                                                              0 B .                          (5) 

Let some field configuration be self-dual; if this field obeys (4) and (5), it automatically verifies 

(2) and (3). Maxwell’s equations are linear, hence any superposition of self-dual and anti-self-

dual solutions is a further solution. The condition that a field configuration is self-dual is not 

invariant under the parity transformation r → -r  because of the opposite parity properties of the 

electric and magnetic field; the mirror-image configuration is anti-self-dual. As will become 

clear, the physically relevant configurations are represented by a sum of self-dual and anti-self-

dual solutions, which is invariant under the parity transformation. 

Let us express the electric field intensity E  and the magnetic field B  in terms of scalar and 

vector potentials V and A . Then the self-duality condition (1) becomes: 

                                                   ( V )
c t


    



A
A .                         (6) 

If we fix the gauge V 0 , then (6) reduces to: 

                                                         
c t


  



A
A ;                         (7) 

Because the self-duality condition (7) is a linear first-order partial differential equation, it is 

simpler to solve than the second-order equations that result from Maxwell’s eqs. (2)-(5). 

Note that given an antisymmetric field F in Minkowski space, the self-duality condition (1) 

can be expressed as: 

                                                           *F iF   ,                         (8) 
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where the Hodge dual field *F  is defined by (1 / 2)*F F 



 . Eq. (8) is identical to (1) 

because E  and B  are expressed in terms of F   as 
0iEi F and (1 / 2)Bi ijk jkF . If the Bianchi 

identity: 

                                                         * 0F 

  ,                         (9) 

is compared with the equations of motion for a free electromagnetic field: 

                                                           0F 

  ,                        (10) 

it becomes apparent that if F  obeys (9) then F  automatically satisfies (10). The imaginary 

factor i in the definition of self-duality (8) is unavoidable if we work in Minkowski space where 

** F F  .  

Therefore, in Minkowski space self-dual field configurations contain complex-valued fields; in 

contrast, in Euclidean space the factor of i is absent and self-dual fields can be real. We note that 

fundamental physical laws are usually formulated in the form of differential equations with real 

coefficients. However, this formulation does not necessarily implies that every solution to such 

equations is real; the only a priori constraint, stemming from the fact that the coefficients of the 

differential equations are real, is that each complex solution is accompanied by a complex-

conjugate solution. Complex fields occur only as pairs of complex-conjugate solutions. 

 

3. Time-dependent AB effect for self-dual Abelian gauge fields 

The relativistic form of the AB phase factor can be written as follows: 

                                       
e e

exp( A dx ) exp( Vdt dx)

      A ,                      (11) 

where A  is the Abelian gauge field that might be transformed under the U(1)  group via: 

 

                                                           A A      ,                       (12) 

 

such that   is a transformation function of space–time coordinates [12, 13]. By using Stokes' 

theorem, we may rewrite the phase factor in a 2-form structure, stating that the integral of a 

differential form A’over the boundary of some orientable manifold Ω is equal to the integral of 

its exterior derivative dA'  over the whole of Ω, which may be expressed as: 

http://www.sciencedirect.com/science/article/pii/S0370269316001003#br0160
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                                                             A* dA*
 

  ,            (13) 

 

where A *   and dA* are p -form and (p+1)-form, respectively. One could also define the 1-

form as A*=A=Aμdx
μ
 and 2-form dA*=dA as the Faraday 2-form F by 

 

                                                
x y z

x y z

dA *F (E dx E dy E dz) dt

B dy dz B dz dx B dx dy

     

    
 ,         (14) 

 

where E and B are the electric and magnetic fields, respectively. Therefore, (11) can be rewritten 

as in (15) below: 

                                         
e e

exp( A dx ) exp( *F dx dx )
2

  

       .         (15) 

 

This expression plays a key role in the study of the AB phase factor when considering the time-

dependent Abelian gauge fields. Time-dependent AB effect is based on constructing a subspace 

in a space–time in which the four-vector potential depends on time; both the electric and the 

magnetic effects depend on the particle's particular path in this subspace [4]. We assume that the 

magnetic field inside the solenoid is time-dependent so that the vector potential A will be time-

dependent outside the solenoid. However, based on Maxwell's equation, i.e., E=−∂ tA 

with V 0 , an electric field is also created outside the solenoid (we have assumed the scalar 

potential field V to be zero). Thus from (1), (8), (14) and  (15), the magnetic phase factor is 

obtained by: 

                                      x y z

e e
B dy dz B dz dx B dx dy B(x, t) dS        ,         (16) 

and the electric part of the phase is given by: 

 

                                          x y z

e e
(E dx E dy E dz) dt iB(x, t) dS       ,         (17) 

 

where we have replaced the electric field by −∂ t A. It is clear that the AB phase shift for a time-

varying magnetic field does not vanish; this means that the magnetic AB phase shift   is 

complex and it is not canceled out by a phase shift coming from the Lorentz force associated 

with the electric field, E=−∂ tA, outside the solenoid, This result is different to the case where 

E=B  [5-10] where we have *F F  ,  E=B , with c=1 and  

 

                                       x y z

e e
B dy dz B dz dx B dx dy B(x, t) dS          

http://www.sciencedirect.com/science/article/pii/S0370269316001003#fm0010
http://www.sciencedirect.com/science/article/pii/S0370269316001003#fm0050
http://www.sciencedirect.com/science/article/pii/S0370269316001003#br0040
http://www.sciencedirect.com/science/article/pii/S0370269316001003#fm0040
http://www.sciencedirect.com/science/article/pii/S0370269316001003#fm0050
http://www.sciencedirect.com/science/article/pii/S0370269316001003#br0030
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and  x y z

e e
(E dx E dy E dz) dt B(x, t) dS       , so: 

 

                                               
e

B(x, t) dS  
e

B(x, t) dS  =0.           (18) 

 

That is, the AB effect with a time-dependent magnetic field obtained in [5-11], shows that a 

cancellation of phases occurs in the AB effect 0  with a time-dependent magnetic field. An 

extra phase coming from the electric field, E=−∂ tA, outside the solenoid cancels out the phase 

shift of the time-dependent magnetic field. 

 

4. Conclusion 

We have discussed Aharonov–Bohm effect under self-duality condition of electromagnetic 

field,*F iF   , where we have not an exact cancellation of the AB(t) phase shift because it is 

complex. This means that the time-dependent AB effect, magnetic AB phase shift is not canceled 

out by a phase shift coming from the Lorentz force associated with the electric field, E=−∂ tA, 

V=0.This  resul t  can  be compared with the obtained by other  authors  which  

have shown that AB(t) effect vanishes for Abelian electromagnetic plane waves [5-11], that is, 

there is an exact cancellation of the magnetic and electric AB phase shifts so that one finds no 

net phase shift differences coming from the time–dependent electromagnetic field. 
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