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Abstract 
In the present paper it is shown that a fully correspondence between the quantum and the 

electromagnetic forms of the Dirac electron theory exists, so that each element of the Dirac 

theory has the known electrodynamics meaning and vice-versa. 
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1.0. Introduction. The spinor and bispinor equations of photon 
 

On the basis of the previous papers we will show here that all the mathematical particularities of 

the Dirac electron theory have the known electrodynamics meaning. 

 

As is known (Akhiezer and Berestetskiy, 1965), there are many identical mathematical 

representations of the equation of electron. Since, according to the nonlinear theory of elementary 

particles (NTEP), an electron has electromagnetic origin, it can be assumed that all these 

representations have a base in nonlinear electrodynamics. In particular, they must be based on the 

linear equations of photon (Kyriakos, 2010a) and nonlinear equation of intermediate massive 

photon (Kyriakos, 2010b). Let us examine the special features of these equations, which must also 

be reflected in the equations of electron. 

 

As we noted (Kyriakos, 2010a), the quantum equation of photon can be recorded in the form of 

Maxwell-Lorentz equations, taking into account the quantization of energy according to Planck. 

In particular, these equations can be written down in the spinor and bispinor form. 

The Maxwell-Lorentz equations for a photon, as quantum of electromagnetic wave, in the spinor 

form looks as follows: 
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wave functions of an photon in the spinor form, described by means of the following matrices: 
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Let us examine the photons, which move in the fixed coordinate system ZYX ,,  along the y-axis.  

For such photons, according to electrodynamics, the relationship 0 yy  takes place, 

which is invariant, relative to the Lorentz transformations. Therefore they are described only by 

two vectors, perpendicular to y-axis. 

 

If we connect the Frenets trihedron  

,,bn  to the electrical, magnetic and Poynting vectors 

 S , ,


  respectively, then the latter will be collinear with the  y-axis (here n


 is a normal unit 

vector to the trajectory of the photon, b


 is the unit vector of binormal and 


 is the unit vector of 

tangent to the trajectory of photon (with the rectilinear motion, this vector coincides with the 

trajectory of the motion of photon, and with the curvilinear it is directed tangentially toward the 

curve). Additionally the electrical and magnetic vector can be turned relatively to y-axis to any 

angle   in the limits  20  , without changing the physical characteristics of photon. Taking 

into account this, one should conclude that in the general case there is an infinite number of such 

photons.  

 

Obviously any linearly polarized photon can be represented as the sum of two photons with 

mutually perpendicular vectors  zx  ,   and   xz  , with a different absolute value. In that 

case vectors are harmonic functions, this sum is the elliptically-polarized or circularly polarized 

photon. Since according to the Bose-Einstein theory the monochromatic electromagnetic wave is 

Bose-condensate of the photons of one frequency, we can present photons as EM wave, and vice 

versa.        

 

Figure 6.1 depicts a change in the electric field of photon, which moves along the y-axis, the 

polarization plane of which composes the angle 2   with the plane ZOY.  The figure also 

shows the projections of the motion of electric vector on the plane ZOY and XOY, which illustrate 

the photons with its field components  zx  , and xz  , : 

 

 
Рис. 6.1. 

Further we will have in mind the general case of two separate photons zx  ,  and  xz  , , or 

one circularly polarized photon composed of this pair of EM field vectors (Fig. 6.2): 
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Рис. 6.2. 

 

Introducing spinors in the form: 
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and taking into account that    yy    , , we will obtain the Maxwell equations of two 

electromagnetic waves or photons (in the case of the quantization of their energy): 
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,   (6.1.4) 

 

It is not difficult to see that two equations (6.1.1) can be recorded in the form of one equation. 

Actually, introducing a wave function  , called bispinor, by means of the following matrix: 
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two spinor equations can be rewritten as one equation: 

 0ˆ ˆˆ  pc


 , (6.1.6) 

where  ˆ  ,
̂

 are the Dirac matrices:  
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It is not difficult to prove that using bispinor  , we will obtain the same EM equations (6.1.4). 

The equations (6.1.4) a and d correspond to the polarized in the plane XOY photon.  Equations 

(6.1.4) b and c correspond to the polarized in the plane ZOY photon. Physically these photons are 

identical in view of uniformity and isotropism of empty space. But the mathematical record must 

consider the special features of their propagation depending on the choice of coordinates. The 
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direction of propagation of electromagnetic wave is determined by the Poynting vector and in the 

Gauss system units takes the form: 

     


4
S

c
P  ,  (6.1.7) 

 

For the wave along the y-axis we have: 

 ),(S xzzxP j 


 (6.1.8) 

where 

j  is  the unit vector of y-axis. As we see, the photon  zx  ,  moves against the direction 

of  y-axis and the equation of field components in this case must be written in the form: 
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   ,  (6.1.9) 

Photon  xz  , moves along the direction of  y-axis and the equation of its components must be 

written in the form: 
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As it follows from the previous paper (Kyriakos, 2010b), for the formation of electron the photon 

must, first of all, experience the transformation of rotation in the plane  


,n . Obviously, the 

eventual result of transformation does not depend on the turning of the coordinate system. This 

means that the transformations, which describe a passage from one Cartesian system to any other, 

must exist without a change in the result of the rotatory transformation of photon. 

 

By twisting the photon can form a ring either in the plane XOY or in the plane YOZ. In the process 

of rotation transformation the ring currents are formed: 

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4
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4

mj , and 

“linear” mass-free photon is converted into the massive intermediate boson, which we 

conditionally call intermediate massive photon. The electric charge of this photon is equal to zero, 

since it contains alternating current. A question arises of how are fields directed in the 

intermediate massive photon? 

 

The rotation of photon can be accomplished clockwise and counter-clockwise (looking from the 

end of the magnetic vector) (Fig. 6.3): 

 
Рис. 6.3  

 

The result will be somehow different if both photons form a circularly polarized photon. We will 

examine this case in the paper, dedicated to neutrino.  
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It follows from above that both the intermediate photons and electrons and positrons must have a 

set of forms of representations, which do not change the physical sense of equations and particles’ 

characteristics.  

 
 
2.0 The electrodynamic and quantum forms of Dirac's equation 
 

As we showed in the previous paper (Kyriakos, 2010c), massive photon can experience 

spontaneous  breaking of symmetry and can be divided into two half-periods – two semi-photons: 

electron and positron. Accordingly we obtained the equations of these particles. They are known 

as spinor and bispinor forms. 

 
2.1. The spinor electron equation  
 

For the appearance of the charged particle - electron it is necessary that the rotation of photon 

occured in the plane, which contains the electric vector and the vector of Poynting. After the 

breaking of intermediate photon into semi-photons, they can form rings either in the plane XOY or 

in the plane YOZ. In this case magnetic currents are not formed. But for the symmetry we will 

examine the general case of existence of both electric and magnetic currents: 
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4
 , taking into account that for the electron and positron the magnetic currents are 

equal to zero. 

 

Introducing   and   as the wave functions of an electron in the spinor form by means of the 

following matrices: 
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we obtain Dirac's equation in the spinor form: 
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Taking into account that        y y, , we will obtain Maxwell's equations in the 

complex form with electrical and magnetic currents: 
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where  mcc  . In the quantum form this system is more conveniently written in the form of 

one bispinor equation of Dirac. 

 
2.2. The bispinor electron equation (Dirac's electron equation) 
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Dirac's equation more frequently is written in a bispinor form. Introducing a wave function by 

means of the following matrix: 
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two spinor equations of electron can be rewritten as one Dirac’s electron equation: 

 0ˆˆ ˆˆ 2   mcpc


, (6.2.5) 

 
2.3. Quantum forms of Dirac’s electron and positron equations  
 

There are two bispinor Dirac equations (Akhiezer and Berestetskii, 1965; Bethe, 1964; Schiff, 

1955; Fermi, 1960): 
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,    (6.2.7) 

which correspond to two signs of relativistic expression of an electron energy:  

 4222 cmpc 


 ,  (6.2.8) 

Moreover, for each sign of expression (6.2.8), there are two Hermitian-conjugate Dirac 

equations. Thus, there are two Hermitian-conjugate equations corresponding to a minus sign of 

the expression (6.2.8): 
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and  two equations that correspond to plus signs of (6.2.8): 

        0ˆˆ ˆˆˆ 2   mcpco


,  (6.2.10’) 

        0ˆˆ ˆˆˆ 2  mcpco 


,   (6.2.10’’) 

We will further use the wave function of a circular-polarized EM wave that is moving as in the 

previous papers along the y - axis:  
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2.4. EM forms of Dirac’s electron equation 
  

Let us consider first two Hermitian-conjugate equations, corresponding to a minus sign of 

expression (6.2.8):  

 

Using (6.2.11), we obtain from (6.2.9’) and (6.2.9’'): 
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where              
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are complex currents.  

 

Thus, the equations (6.2.9’) and (6.2.9’’) are Maxwell’s equations with complex currents, where 

Hermitian-conjugate equations (6.2.12) and (6.2.13) differ by  current directions.  

 

Let us consider now equations that correspond to a plus signs of (6.2.8). An electromagnetic form 

of equation (6.2.10’) is: 
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
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

,   (6.2.14) 

Obviously, an electromagnetic form of equation (6.2.10’’) will have the opposite signs of  

currents with regard to (6.2.14). Comparing (6.2.14) and (6.2.12), we can consider equation 

(6.2.14) as the Maxwell’s equation of the retarded wave in relation to Maxwell’s equation of 

advanced wave (6.2.12). 

 

So, if we do not want to use the retarded wave, we can transform the wave function of the 

retarded wave to the following form: 

 


























z

x

z

x

ret

iH

iH

E

E

 ,   (6.2.15) 

 

Then, contrary to the system (6.2.14), we get the system (6.2.12). The transformation from the 

function ret  to the function adv  is called a charge conjugation operation. Thus, we can say that 

the electron and positron wave functions can be considered as retarded and advanced waves.  
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Note that the above result relates to the theory of advanced waves of Wheeler and Feynman 

(Wheeler and Feynman, 1945;  Wheeler, 1957). (See also the Dirac’s work on time-symmetric 

classical electrodynamics  (Dirac, 1938) and Konopinski’s book on the same topic (Konopinski, 

1980).  

 
3.0. Electrodynamics’ meaning of bilinear forms  
 

This is well known that there are 16 Dirac matrices of 4x4 dimensions. We exploit the same set 

of matrices used by Dirac, and name it as  -set. 

The values  ˆO , where ̂  is any of  the Dirac’s matrices, are called bilinear forms of 

Dirac's electron theory. 

 

It can be shown that the tensor dimension of a bilinear form follows from the tensor’s nonlinear 

electrodynamics forms. Let us enumerate the Dirac’s matrices as follows (Akhiezer and 

Berestetskii, 1965; Bethe, 1964; Schiff, 1955): 

 ˆˆ  )1 4  ,         (6.3.1) 

   432100
ˆ,ˆ,ˆ,ˆ,ˆˆ,ˆˆ  )2  


,                      (6.3.2) 

43215
ˆˆˆˆˆ  )3   ,      (6.3.3)  

  ˆˆˆ  )4 5 A ,     (6.3.4) 















 


               ,0

  ,ˆˆˆ
ˆˆ  )5

i
,                         (6.3.5) 

Here we have: 1) scalar, 2) 4-vector, 3) pseudoscalar, 4) 4-pseudovector, 5) antisymmetrical 

tensor of a second rank.  

 

Let us calculate electrodynamics values corresponding to the above matrices using    according 

to (6.2.11). 

 

1)     ,8ˆ
1

222222
4 IHEHHEE zxzx  


 where I1  is the first scalar 

(invariant) of Maxwell theory; it is also Lagrangian of an electromagnetic field in vacuum; 

 

2) uHEo  8ˆ 22 


, where u  is the energy density of the electromagnetic field; 

   yPyy gcS
c


 8

8
ˆ 


  , where 


g y  is a momentum density of an electromagnetic 

wave’s field moving along the Y-axis. As it is well known, the value 








gu
c


,

1
 is a 4-vector of the 

energy-momentum. 

 

3)    HEHEHE zzxx


 22ˆ

5  is a pseudoscalar of electromagnetic field, and 

  2

2
IHE 


 is the second scalar (invariant) of electromagnetic field theory. We will show 

subsequently that this bilinear form is related to spirality of particles. 

 

4)     HEHEHE zzxx


 22ˆˆ

05   

     ,2ˆˆ
15 zxzx HHEEi    

    ,0ˆˆ
25    
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    ).(ˆˆ
2222

35 zxzx HHEEi    

 

In quantum mechanics, three-dimensional components of the spin’s tensor are expressed through 

these matrices (Sokolov and Ivanenko, 1952).  

 

5) Tensor  
ˆ  can be presented in a compact form as follows: 

 

 
   

   
    






























0202

2020

020

200
2222

2222

zzxxxzzx

zzxxzxzx

zxzxzxzx

xzzxzxzx

HEHEHEHE

HEHEHHEE

HHEEHHEE

HEHEHHEE



  

 

In quantum mechanics, tensor  ̂  (Levich, 1969) describes magnetic and electric moments of an 

electron. In our theory, the bilinear form of this tensor describes also the Lorentz’s force acting to 

an electron. 

 
 
4.0. On statistical interpretation of the wave function 
 

In quantum theory the term wave function refers generally to a complex n-components function 




 as an element in a complex Hilbert space. In non-relativistic theory a wave function refers to a 

one-component complex function. In relativistic theory a wave function is a vector 


 with n 

components, which is usually described as the following matrix: 



















nc

c




1

  

 

In the quantum theory a wave function, itself, does not have a physical sense, and it is considered 

as a certain mathematical model (mapping) of a real elementary particle. The real function, 

obtained from the wave function via its quadrature, has here a physical sense. In the non-

relativistic case the quadrature ensues from multiplication of wave function by its complex 

conjugate function.  In the relativistic case product of the Hermitian-conjugated wave functions 

is used. In the quantum theory it is accepted that the square (in the sense, indicated above) of 

normalized by unit wave function  describes the probability density of finding the particle in the 

given place in given time.   

 

In the case of nonlinear theory, (see previous papers (Kyriakos, 2010a,b,c)), the components of 

the non-normalized wave function are the projection on the selected system of coordinates of the 

vectors of nonlinear electrical and magnetic field of elementary particle (photon, electron and 

others). Nonlinearity is described in this case with complex functions. The basic measurable 

parameters of the elementary particle are its energy, momentum, angular momentum and so 

forth, which are expressed in electrodynamics through the squares of the components of the 

vectors of the EM field (see above). Therefore for obtaining such real values it is necessary to get 

rid of the complexity and obtain a certain real function or number. Exactly for this case the 

product of the Hermitian-conjugated matrices is necessary. In the non-normalized form this 

product is equal to the energy density of particle. Normalization, in regard to the total energy of 

particle or its mass, turns the energy density into a fraction in the range from zero to one, which 

can be treated as the probability density to find the particle in the given place of space at the 

given instant. 



 
  
Prespacetime Journal| December 2010 | Vol. 1 | Issue 10 | pp. 1528-1544 

Kyriakos A. G. Nonlinear Theory of Elementary Particles: VI. Electrodynamic Sense of the Quantum Forms of Dirac 
Electron Theory 

ISSN: 2153-8301  Prespacetime Journal 

Published by  QuantumDream, Inc. 

    www.prespacetime.com 

 
 

1537 

 

Everything, which was said in the paper (Kyriakos, 2010a) about the normalized and non-

normalized representation of the wave function of photon (see in particular paragraph “3.0. 

Normalized and non-normalized representation of the wave function of the photon”), is valid for 

the wave function of electron. In other words, the wave function of electron in the non-

normalized form is the projection of the strength vector of the nonlinear electromagnetic field at 

a certain time and position. Accordingly the square of the non-normalized function of electron is 

the energy density of electron. In the normalized form this square can be considered as the 

density of the probability to find the electron at a certain time and position.  

 

For confirmation of this assertion we will additionally examine the probability continuity 

equation of electron theory. 

 

As it is well known, the probability continuity equation can be obtained from the Dirac’s 

equation (Akhiezer and Berestetskii, 1965; Bethe, 1964; Schiff, 1955; Fermi, 1960): 

 
 

  ,0, 
 

, 
 trSdiv

t

trP
pr

pr 





   (6.4.1) 

Here,    0
ˆ, trPpr


 is the probability density, and    ˆ,


 ctrS pr  is the probability 

flux density. Using the above results, for non-normalized wave function we can obtain: 

  utrPpr  8, 


 and SgcS pr


 82  . Then, an electromagnetic form of equation (6.3.15) can 

be presented in the following form: 

 0 
 

 
 Sdiv

t

u 




,   (6.4.2) 

which is the form of law of energy conservation of electromagnetic field. 

 
 
5.0. The electrodynamical meaning of matrices’ choice 
 

According to Fermi
 
(Fermi, 1960) "it can prove that all the physical consequences of Dirac’s 

equation do not depend on the special choice of Dirac’s matrices… In particular it is possible to 

interchange the roles of the four matrices by unitary transformation. So, their differences are only 

apparent".  

 

The matrix sequence )ˆ,ˆ,ˆ( 321   agrees with an electromagnetic wave that has y -direction. 

The question arises: how to describe the waves that  have x  and z  - directions?  

 

Introducing the axes' indexes that indicate the direction of an electromagnetic wave, we can write 

three groups of matrices each of which corresponds to one, and only one, wave direction: 

         ),ˆ,ˆ( 321 zyx
 , ),ˆ,ˆ,ˆ( 132 zyx

 , )ˆ,ˆ,ˆ( 312 xyz
 . 

 

Let us choose now the wave function forms which give correct Maxwell equations for x  and z  - 

directions. Taking into account (6.2.11)  as an initial form of the y  - direction, we will get other 

forms from it by means of indexes’ transposition around the circle (see. Fig. 6.4). 

 
Fig. 6.4. 
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 Since in this case the Poynting vector has the minus sign, we can assume that the transposition 

must be counterclockwise. Let us examine this supposition checking the Poynting vector’s values:  

 

The sets ),ˆ,ˆ( 321 zyx
 , ),ˆ,ˆ,ˆ( 132 zyx

 , )ˆ,ˆ,ˆ( 312 xyz
  correspond to wave functions 
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and to non-zero Poynting vectors  

 yHE
y


 2ˆ

2  ,  xx HE


 2ˆ
2  ,  zz HE


 2ˆ

2    respectively. As we can 

see, we obtained a correct result. 

 

We can assume now that the wave functions will describe electromagnetic waves by a clockwise 

indexes’ transposition. These wave functions move in a positive direction along the different co-

ordinate axes. Let us prove this: 

 

The sets ),ˆ,ˆ( 321 zyx
 , )ˆ,ˆ,ˆ( 132 zyx

 , )ˆ,ˆ,ˆ( 312 xyz
  correspond to wave functions 
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2   respectively. As we can see, 

once again, we get correct results. 

 

Now, we will prove that the above choice of matrices and wave functions gives correct 

electromagnetic equation forms. If we use, for instance, equation (6.2.10’) and transpose the 

indexes clockwise, then we correspondingly obtain for the positive direction of electromagnetic 

wave the following results for x , y , z -directions: 
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, (6.5.1) 

 

Therefore, we have obtained three equation groups each of which contains four equations, as this 

is necessary for description of all electromagnetic wave’s directions. In the same way, analogous 

results can be obtained for all other forms of Dirac equation.  

 

Obviously, it is also possible, using canonical transformations, to choose the Dirac matrices in 

such a way that electromagnetic wave will have any direction. Let us show this. 
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4.1. EM meaning of canonical transformations of Dirac's matrices and 
bispinors 
 

The choice of the  -set matrices is not unique (Akhiezer and Berestetskii, 1965; Schiff, 1955; 

Fock, 1932). As it is well known, there is a free transformation of a kind of  SS '  (where 

S  is a unitary matrix called a canonical transformation operator), to which the wave 

transformation of functions '  corresponds: ' S . This does not change the results of the 

theory.    

 

If we choose matrices '  as       











x

x






ˆ0

0ˆ
'ˆ
1

 ,  
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














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
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




ˆ0

0ˆ
'ˆ
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
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 
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i
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
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

, (6.5.2) 

then the functions   will be associated with functions '  according to the relationships: 
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 , (6.5.3)  

A unitary matrix S , which corresponds to this transformation, is equal to: 
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1
S ,      (6.5.4) 

 

It is not difficult to verify, that by means of this transformation we will also obtain equations of 

Maxwell theory. In fact, it is easy to get the following using (6.2.11) and (6.5.3):  

zxzx iHiHEE 
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'' 32413241  ,(6.5.5) 

whence:  
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Substituting these functions into the Dirac’s equation, we will obtain correct Maxwell equations 

for electromagnetic waves in double quantity. It is possible to assume that functions '  

correspond to an electromagnetic wave moving at angle of 45 degrees to both coordinate axes.  

Thus, it follows from the above result that every choice of Dirac matrices defines only the 

direction of an initial electromagnetic wave. Obviously, this is a physical reason why “the 

physical consequences   of  the Dirac’s   equation   do   not depend  on  the special choice of  

Dirac’s matrices”
 
(Fermi,1960). 

 
 
6.0. An electromagnetic form of the electron theory’s Lagrangian 
 

The Lagrangian of the Dirac theory can have the following form (Schiff, 1955): 

   , ˆˆ ˆˆ 2  mcpcL   
    (6.6.1) 
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If an electromagnetic wave is moving along the  y -axis, then equation (6.6.1) can be 

rewritten as follows: 

        , ˆ
 

 
ˆ

 

 1










  



mc
i

ytc
L y   (6.6.2) 

 

Transforming each term in (6.6.2) to electrodynamics form, we obtain an electromagnetic form 

of Lagrangian of Dirac’s theory: 

  ,
4

 
 

 22 HEiSdiv
t

u
L











     (6.6.3) 

(Note that in a case of variation procedure we must distinguish the complex conjugate field 

vectors 

E * ,


H * and 


E ,


H ). Using complex electrical and "magnetic" currents (6.2.13’) and 

(6.2.13’’), we have: 

  HjEjSdiv
t

u
L me


  

 

 




,  (6.6.4) 

 

It is interesting that since 0L  due to (6.2.11), we can take the following equation: 

   0 
 

 
 HjEjSdiv

t

u me





,         (6.6.5) 

which has a form of the  law of conservation of energy-momentum  for Maxwell equation with  

current. 

 
 
7.0. An expression of Lorentz force in EM representation 
 

According to our theory, the force that is perpendicular to the trajectory of motion of EM fields 

must appear to provide stability of EM particles.  At the same time, the tangential force (by our 

choice – along the y -axis) must absent in this case, since it would provoke a tangential 

acceleration of electric charge. 

 

As it is known from (Jackson, 1999), an expression of Lorentz's force in a vector form is 

described by the expression:  H
c

e
EeF


  , where 


 is the charge velocity. Introducing the 

charge density  dde , it is possible to rewrite this expression in a form: 




dHj
c

EF  









)(

1 
, where   is the volume occupied by charge. The expression in 

brackets is called a Lorentz force’s density Hj
c

E
d

Fd
f







1



, which acts to any part of the 

charge (electron) itself. Since 


j  (where, in case of NEPT, c


 inside the electron), then 

we can rewrite this expression as Hj
c

Ej
c

f



11

. 

 

If a photon undergoes the rotation transformation around the OZ axis, we obtain: 

  zxx
OZ HEj

c
f 

1
 

 

If a photon undergoes the rotation transformation around the OX axis, we obtain: 
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  xzz

OX HEj
c

f 
1

 

(the upper left index shows the spinning  axis OZ or OX).  

 

The Lorentz’s force density in classical electrodynamics can be expressed through the 

symmetrical energy-momentum tensor of electromagnetic field  


 (Tonnelat, 1959; Ivanenko 

and Sokolov, 1949): 

 ,
4

1

 

 

4

1 





 







x
f      (6.7.1) 

where  


 is determined by the following expressions: 

    22

2

1



ijjijiij  ,  

  ii S 


 44  ,  

  22
44

2

1
 4 


u ,  

Here, indices 4,3,2,1,  , 3,2,1, ji ; 0ij , when  ji   and 1ij  for ji  . Moreover, a 

4-vector of the space-time has the form      ictzyxxrxxx i ,,,,, 44 


 . 

Using (6.7.1), the force components can be written as: 

 , 
 

 
  ,0 








 Ugrad

t

g
fff yzx






 (6.7.2) 

 







 gdivc

t

u

c
f


  

 

 1
4




, (6.7.3) 

 

Here, first three components describe the Lorentz force density vector, and the fourth component 

corresponds to law of energy conservation. 

 

As we can see, if we use a symmetrical energy-momentum tensor, then we do not obtain the 

needed components of the force. Actually, in this case the components xf  and yf  are equal to 

zero, but the yf  component not. 

 

It appears that the right result can be obtained if we use antisimmetrical tensor   (6.3.5). Then, 

we have: 

 





 




 4

1

 

 

4

1


x
f , (6.7.4) 

Or, using the tensor components:  

 



















































0

0

0

4

34

2

32

4

14

2

12

f

xx
f

f

xx
f

x

y

x

















,   (6.7.5) 

 

Using (6.2.11) and (6.3.5), we obtain components of the Lorenz’s force: 
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





































y

E

t

H

c
E

y

H

t

E
H

y

H

t

E

c
H

y

E

t

H

c
Ef

zx
z

xz
x

zx
z

xz
xx

 

 

 

 1

 

 

 

 
              

 

 

 

 1 

 

 1
 2


































 

,0yf  
   (6.7.6)

 







































y

E

t

H

c
E

y

H

t

E
H

y

H

t

E

c
H

y

E

t

H

c
Ef

xz
z

zx
x

xz
z

zx
xx

 

  1

 

 

 

 
            

 

 1 

 

 1
 2


































  

,04 f
 

(Note that we obtained here the double number of brackets since bispinor (6.2.11)  contains two 

plane polarized waves of the same direction, which turn around the different axes). 

For a “linear” photon, all expressions in brackets in (6.7.6) are equal to zero according to 

Maxwell equation. It means that no forces appear in the linear EM wave quantum. When photon 

rotates around any axis which are perpendicular to y -axis, we will get additional current terms 

 Eij


  (6.7.7) 

where the imaginary unit indicates that the tangential current is perpendicular to electric vector of  

wave. 

 

For the transformed photon (Ex, Hz), the force components are: 

    zxzxxx
OZ HEj

c
HEE

c
if  





1

4

1
, (6.7.8) 

 

For the transformed photon (Ez, Hx), we have: 

    xzxzzz
OX HEj

c
HEE

c
if  





1

4

1
, (6.7.9) 

        
0yf ,   (6.7.10) 

        
04 f ,   (6.7.11) 

As we can see, the results (6.7.8) – (6.7.11) correspond to our representations of dynamics of a 

semi-photon. 

 
 
8.0. EM and QM representation of interaction Lagrangian and 
Hamiltonian of nonlinear theory 
 

The Hamiltonian and Lagrangian of NEPT, considered as a nonlinear theory, must contain all 

possible invariants of nonlinear electromagnetic field theory. Thus, we can assume that the 

Lagrangian must be some function of field invariants: 

 ),( 21 IIfL L ,      (6.8.1) 

where    HEIHEI


 2

22

1 , . 

 

Hamiltonian is fully defined by the Lagrangian. Thus, if function (6.8.1) is known, then it is easy 

to calculate the Hamiltonian using formulas (1.13),  which will be now functions of various 

powers of electromagnetic field vectors:  

 ),( HEf


 ,  (6.8.2) 
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Apparently, the functions Lf  and f  must have its special form for each problem. This form is 

unknown before the problem’s solution. As it is known, an approximate form of function f  can 

be found on the basis of Schroedinger’s or Dirac’s wave equations using the so-called 

perturbation method. Here, we assume that there is an expansion of function f  in the Taylor–

MacLaurent power series with unknown expansion coefficient. Then, the problem is reduced to 

calculation of these coefficients. The solution is searched for each term of the expansion 

separately, starting from the first. Usually, this is a problem for a free particle, whose solution is 

already known. Then, using an equation with two first terms, we find the coefficient of the second 

term. Using further an equation for the first three terms, we find the coefficient for the third term 

of expansion, etc. In many cases, it is possible to obtain the solution by this method with any 

desirable accuracy. 

 

In case of function of two variables ),( yxf , the Taylor – MacLaurent  power series in the 

vicinity of the point ),( 00 yx  is: 

 n

kn

k

Oyxf
y

yy
x

xx
k

yxfyxf 
















 



),()()(
!

1
),(),( 00

1

0000 , (6.8.3) 

where 2
0

2
0 )()( yyxx  , 

y

yxf
yy

x

yxf
xxyxf

y
yy

x
xx





























),(
)(

),(
)(),()()( 00

0
00

00000 , (6.8.4) 
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)(),()()(
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yxf
yyxx

x

yxf
xxyxf

y
yy

x
xx



































,(6.8.5 

etc. (In case when 0,0 00  yx , we obtain the MacLaurent series). 

 

Obviously, for the most types of functions ),( 21 IIfL , the expansion contains approximately the 

same set of terms that differ only by constant coefficients, any of which can be equal to zero (as 

an example,  see expansions of quantum electrodynamics Lagrangian for a particle in the presence 

of physical vacuum (Akhiezer and  Berestetskii,. 1965; Schwinger, 1951; Weisskopf, 1936). In 

general, the expansion will look like: 

   '
8

1 22 LBELM 



,   (6.8.6) 

where 

 
      

     ...         

'

222322

222222





BEBEBE

BEBEBEBEL







, (6.8.7) 

is the part which is responsible for the nonlinear interaction (here, ,...,,,,   are constants). 

 

The corresponding Hamiltonian will be defined as follows: 

   '
8

1 22 HBEL
E

L
EH

i i

i 








,  (6.8.8) 

where the Hamiltonian part responsible for the nonlinear interaction is: 

  
    
      ...35         

3'ˆ

2222222

22222





BEBEBEBE

BEBEBEH







, (6.8.9) 
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It is not difficult to obtain a quantum representation of the Hamiltonian (6.8.9) of nonlinear 

theory. Replacing vectors of electromagnetic wave field by quantum wave function, we will 

obtain the series of the following type:  

 
    

    ...ˆˆˆ        

ˆˆˆˆ

2

10
















kjii

jii

c

c
, (6.8.10) 

where i̂ , j̂ , k̂  are Dirac’s matrixes, ic  are coefficients of expansion.  

As we can see, the terms of Lagrangian and Hamiltonian series contain the same elements, such  

as      22222   ,  , BEBEBE


 , and some others. It is possible to assume that each element of 

series has some particular physical meaning. In this case, it is possible to see analogy with the 

expansion of fields of electromagnetic moments (2.23), and also with the decomposition of S-

matrix on the elements (Akhiezer and  Berestetskii,, 1965), each of which corresponds to 

particularities of interaction of separate particles.  
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