Article

On Bisector Surface in Minkowski Space
Muhammed T. Sariaydin* \& Vedat Asil** ${ }^{*}$
*Muş Alparslan University, Department of Mathematics, 49250, Muş, Turkey
${ }^{* *}$ Frrat University, Department of Mathematics, 23119, Elazığ, Turkey

Abstract

In this paper, we study bisector surfaces of some special curves in Minkowski 3-space. First, we give properties and the basic concepts of curves in \mathbb{E}_{1}^{3}. Then, we construct bisector surface generated by pedal and parallel curves of given timelike curve in \mathbb{E}_{1}^{3}. Moreover, we show how to generate the this surface. Finally, we give an example of these surfaces in \mathbb{E}_{1}^{3}.

Keywords: Minkowski space, bisector surface, parallel curve, pedal curve.

1 Introduction

The Bisctor surface is a special surface because this surface is defined by any two objects in 2 -dimensional or 3-dimensional space. These objects can be point-curve, curve-curve or surfacesurface. Moreover, the Bisector surface is the set of points which are equidistant from the two objects, [4]. This surface is often used in scientific research in the past. For example, Horvath proved that all bisectors are topological images of a plane of the embedding Euclidean 3-space if the shadow boundaries of the unit ball K are topological circles in [8], and Elber studyed a new computational model in \mathbb{E}^{3} in [5]. The parallel curves are developed by Chrastinova in 2007. These curves are not easy to characterize in 3-dimensional space until this time. Additionally, he study parallel curves of a special curve as helices.

In this paper, we study bisector surfaces of some special curves in Minkowski 3-space. First, we give properties and the basic concepts of curves in \mathbb{E}_{1}^{3}. Then, we construct bisector surface generated by pedal and parallel curves of given timelike curve in \mathbb{E}_{1}^{3}. Moreover, we show how to generate the this surface. Finally, we give an example of these surfaces in \mathbb{E}_{1}^{3}.

2 Preliminaires

Given a spatial curve $\xi: s \rightarrow \xi(s)$, which is parameterized by arc-length parameter s. For each point of $\xi(s)$, the set $\{\mathbf{t}(s), \mathbf{n}(s), \mathbf{b}(s)\}$ is called the Frenet Frame along $\xi(s)$, where $\mathbf{t}(s), \mathbf{n}(s), \mathbf{b}(s)$ are the unit tangent, principal normal, and binormal vectors of the curve at

[^0]the point $\xi(s)$, respectively. Derivative of the Frenet frame according to arc-length parameter is governed by the relations;
\[

\left($$
\begin{array}{l}
\mathbf{e}_{1}^{\prime}(s) \\
\mathbf{e}_{2}^{\prime}(s) \\
\mathbf{e}_{3}^{\prime}(s)
\end{array}
$$\right)=\left($$
\begin{array}{ccc}
0 & \kappa_{1}(s) & 0 \\
-\kappa_{1}(s) & 0 & \kappa_{2}(s) \\
0 & -\kappa_{2}(s) & 0
\end{array}
$$\right)\left($$
\begin{array}{l}
\mathbf{e}_{1}(s) \\
\mathbf{e}_{2}(s) \\
\mathbf{e}_{3}(s)
\end{array}
$$\right)
\]

where

$$
\kappa_{1}(s)=\left\|\xi^{\prime \prime}(s)\right\|, \kappa_{2}(s)=\frac{\left(\xi^{\prime}(s), \xi^{\prime \prime}(s), \xi^{\prime \prime \prime}(s)\right)}{\left\|\xi^{\prime \prime}(s)\right\|^{2}}
$$

Assume that $\xi(s)$ is an arbitrary timelike curve in the space \mathbb{E}_{1}^{3}, then, the Frenet formulae of $\xi(s)$ are given by

$$
\left(\begin{array}{c}
\mathbf{e}_{1}^{\prime}(s) \\
\mathbf{e}_{2}^{\prime}(s) \\
\mathbf{e}_{3}^{\prime}(s)
\end{array}\right)=\left(\begin{array}{ccc}
0 & \kappa_{1}(s) & 0 \\
\kappa_{1}(s) & 0 & \kappa_{2}(s) \\
0 & -\kappa_{2}(s) & 0
\end{array}\right)\left(\begin{array}{l}
\mathbf{e}_{1}(s) \\
\mathbf{e}_{2}(s) \\
\mathbf{e}_{3}(s)
\end{array}\right)
$$

where

$$
\left\langle\mathbf{e}_{1}, \mathbf{e}_{1}\right\rangle=-1,\left\langle\mathbf{e}_{2}, \mathbf{e}_{2}\right\rangle=\left\langle\mathbf{e}_{3}, \mathbf{e}_{3}\right\rangle=1
$$

Assume that Minkowski 3 -space is consider $\mathbb{E}_{1}^{3}=\left[\mathbb{E}_{1}^{3},(-,+,+)\right]$ and the Lorentzian inner product and vector product, respectively, are

$$
\begin{aligned}
\langle X, Y\rangle & =-x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3} \\
X \times Y & =\left(x_{2} y_{3}-x_{3} y_{2}, x_{1} y_{3}-x_{3} y_{1}, x_{2} y_{1}-x_{1} y_{2}\right)
\end{aligned}
$$

where $X=\left(x_{1}, x_{2}, x_{3}\right)$ and $Y=\left(y_{1}, y_{2}, y_{3}\right) \in \mathbb{E}_{1}^{3},[13]$.
A surface in \mathbb{E}_{1}^{3} is called a timelike surface if the normal vector on the surface is spacelike vector. A surface is called spacelike surface if the normal vector on surface is the timelike vector.

3 The Bisector Surface Obtained a Point and a Curve

In this paper, our goal is construct bisector surface generated by pedal and parallel curves of a given timelike curve in \mathbb{E}_{1}^{3}.

3.1 Bisector Surface Generated by a Point and a Parallel Curve of a Given Timelike Curve in \mathbb{E}_{1}^{3}

Let $\alpha: I \rightarrow \mathbb{E}_{1}^{3}$ be a timelike curve in \mathbb{E}_{1}^{3} and \mathcal{P} be its a parallel curve. Then, Parallel curve of a given timelike curve obtained by;

$$
\begin{equation*}
\mathcal{P}=\alpha-\frac{1}{\kappa_{\alpha}} \mathbf{n}_{\alpha}+\sqrt{t^{2}-\kappa_{\alpha}^{-2}} \mathbf{b}_{\alpha} \tag{3.1.1}
\end{equation*}
$$

Theorem 3.1 Assume that $Q=\left(q_{1}, q_{2}, q_{3}\right)$ is a fixed point and \mathcal{P} is a regular parallel curve of timelike curve. Then, the rational ruled bisector surface $\mathfrak{B}(s, t)$ is

$$
\mathfrak{B}(s, t)=\mathfrak{B}(s)+t \mathcal{N}(s) ; \text { for } s, t \in I R
$$

where

$$
\begin{aligned}
\mathcal{N}(s)= & \mathbf{t}_{\mathbf{p}} \times(\mathcal{P}-Q) \\
= & \left(\mathbf{t}_{\mathbf{p}}^{3}\left(p_{2}-q_{2}\right)-\mathbf{t}_{\mathbf{p}}^{2}\left(p_{3}-q_{3}\right)\right. \\
& \mathbf{t}_{\mathbf{p}}^{3}\left(p_{1}-q_{1}\right)-\mathbf{t}_{\mathbf{p}}^{1}\left(p_{3}-q_{3}\right) \\
& \left.\mathbf{t}_{\mathbf{p}}^{1}\left(p_{2}-q_{2}\right)-\mathbf{t}_{\mathbf{p}}^{2}\left(p_{1}-q_{1}\right)\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& b_{1}=\frac{1}{\mathfrak{J}}\left|\begin{array}{ccc}
r_{1} & \mathbf{t}_{p}^{2} & \mathbf{t}_{p}^{3} \\
r_{2} & n_{2} & n_{3} \\
r_{3} & \left(p_{2}-q_{2}\right) & \left(p_{3}-q_{3}\right)
\end{array}\right|, \\
& b_{2}=\frac{1}{\mathfrak{J}}\left|\begin{array}{ccc}
-\mathbf{t}_{p}^{1} & r_{1} & \mathbf{t}_{p}^{3} \\
-n_{1} & r_{2} & n_{3} \\
-\left(p_{1}-q_{1}\right) & r_{3} & \left(p_{3}-q_{3}\right)
\end{array}\right|, \\
& b_{3}= \frac{1}{\mathfrak{J}}\left|\begin{array}{ccc}
-\mathbf{t}_{p}^{1} & \mathbf{t}_{p}^{2} & r_{1} \\
-n_{1} & n_{2} & r_{2} \\
-\left(p_{1}-q_{1}\right) & \left(p_{2}-q_{2}\right) & r_{3}
\end{array}\right|, \\
& \mathfrak{J}=\left|\begin{array}{ccc}
-\mathbf{t}_{p}^{1} & \mathbf{t}_{p}^{2} & \mathbf{t}_{p}^{3} \\
-n_{1} & n_{2} & n_{3} \\
-\left(p_{1}-q_{1}\right) & \left(p_{2}-q_{2}\right) & \left(p_{3}-q_{3}\right)
\end{array}\right| .
\end{aligned}
$$

Proof. Taking the derivative of the eq (3.1.1), we can computed by

$$
\dot{\mathcal{P}}=\mathbf{t}_{\mathbf{p}}=\left(\frac{1}{\kappa_{\alpha}^{2}}-\sqrt{t^{2}-\kappa_{\alpha}^{-2}} \tau_{\alpha}\right) \mathbf{n}_{\alpha}+\left(\frac{1}{\kappa_{\alpha}^{3} \sqrt{t^{2}-\kappa_{\alpha}^{-2}}}-\frac{\tau_{\alpha}}{\kappa_{\alpha}}\right) \mathbf{b}_{\alpha}
$$

On the other hand, let \mathfrak{B} be a bisector point of $\mathcal{P}(s)$ and Q with its foot points at $\mathcal{P}(s)$ and Q, respectively. Then, it is clear that the point \mathfrak{B} is contained both the normal plane $\mathcal{L}\left(s_{0}\right)$ and the bisector plane $\mathcal{L}_{b}\left(s_{0}\right)$. In that case $\mathcal{L}\left(s_{0}\right)$ and $\mathcal{L}_{b}\left(s_{0}\right)$ intersect in a line $l\left(s_{0}\right)$.

Assume that $\mathcal{N}(s)$ is the direction vector of $l(t)$, then it is clear that $\mathcal{N}(s)$ is contained in both $\mathcal{L}(s)$ and $\mathcal{L}_{b}(s)$ and it is orthogonal to the normal vectors of $\mathcal{L}(s)$ and $\mathcal{L}_{b}(s)$. Therefore, the following equation can be written easily

$$
\begin{aligned}
\mathcal{N}(s)= & \mathbf{t}_{\mathbf{p}}(s) \times(\mathcal{P}(s)-Q) \\
= & \left(\mathbf{t}_{\mathbf{p}}^{3}\left(p_{2}-q_{2}\right)-\mathbf{t}_{\mathbf{p}}^{2}\left(p_{3}-q_{3}\right)\right. \\
& \mathbf{t}_{\mathbf{p}}^{3}\left(p_{1}-q_{1}\right)-\mathbf{t}_{\mathbf{p}}^{1}\left(p_{3}-q_{3}\right) \\
& \left.\mathbf{t}_{\mathbf{p}}^{1}\left(p_{2}-q_{2}\right)-\mathbf{t}_{\mathbf{p}}^{2}\left(p_{1}-q_{1}\right)\right),
\end{aligned}
$$

which is a rational vector field.
An auxiliary plane $(\mathcal{A P}) \mathcal{L}_{n}(s)$ is orthogonal to the intersection line $l(s)$ and passes through the fixed point Q. So $\mathfrak{B}(s)$ is the closest point of $l(s)$ to $Q, \mathcal{A P}$ can be written as:

$$
\mathcal{L}_{n}(s): \quad\langle\mathfrak{B}-Q, \mathcal{N}(s)\rangle=0 .
$$

If the above equations are considered together, we obtain the following equations for intersection point \mathfrak{B} :

$$
\begin{aligned}
\left\langle\mathfrak{B}, \mathbf{t}_{\mathbf{p}}(s)\right\rangle & =\left\langle\mathcal{P}(s), \mathbf{t}_{\mathbf{p}}(s)\right\rangle, \\
\langle\mathfrak{B}, \mathcal{N}(s)\rangle & =\langle Q, \mathcal{N}(s)\rangle, \\
\langle\mathfrak{B}, \mathcal{P}(s)-Q\rangle & =\frac{1}{2}\left(\|\mathcal{P}(s)\|^{2}-\|Q\|^{2}\right) .
\end{aligned}
$$

Then, we have the following matrix equation,

$$
\left[\begin{array}{ccc}
-\mathbf{t}_{p}^{1} & \mathbf{t}_{p}^{2} & \mathbf{t}_{p}^{3} \tag{3.1.2}\\
-n_{1} & n_{2} & n_{3} \\
-\left(p_{1}-q_{1}\right) & \left(p_{2}-q_{2}\right) & \left(p_{3}-q_{3}\right)
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{l}
r_{1} \\
r_{2} \\
r_{3}
\end{array}\right],
$$

where

$$
\begin{aligned}
& r_{1}=-p_{1} \mathbf{t}_{p}^{1}+p_{2} \mathbf{t}_{p}^{2}+p_{3} \mathbf{t}_{p}^{3}, \\
& r_{2}=-q_{1} n_{1}+q_{2} n_{2}+q_{3} n_{3}, \\
& r_{3}=\frac{1}{2}\left(\|\mathcal{P}(s)\|^{2}-\|Q\|^{2}\right) .
\end{aligned}
$$

If eq. (3.1.2) can be solved, then following equation is obtained by

$$
\begin{gathered}
b_{1}=\frac{1}{\mathfrak{J}}\left|\begin{array}{ccc}
r_{1} & \mathbf{t}_{p}^{2} & \mathbf{t}_{p}^{3} \\
r_{2} & n_{2} & n_{3} \\
r_{3} & \left(p_{2}-q_{2}\right) & \left(p_{3}-q_{3}\right)
\end{array}\right|, \\
b_{2}=\frac{1}{\mathfrak{J}}\left|\begin{array}{ccc}
-\mathbf{t}_{p}^{1} & r_{1} & \mathbf{t}_{p}^{3} \\
-n_{1} & r_{2} & n_{3} \\
-\left(p_{1}-q_{1}\right) & r_{3} & \left(p_{3}-q_{3}\right)
\end{array}\right|, \\
b_{3}=\frac{1}{\mathfrak{J}}\left|\begin{array}{ccc}
-\mathbf{t}_{p}^{1} & \mathbf{t}_{p}^{2} & r_{1} \\
-n_{1} & n_{2} & r_{2} \\
-\left(p_{1}-q_{1}\right) & \left(p_{2}-q_{2}\right) & r_{3}
\end{array}\right|,
\end{gathered}
$$

where \mathfrak{J} is

$$
\left|\begin{array}{ccc}
-\mathbf{t}_{p}^{1} & \mathbf{t}_{p}^{2} & \mathbf{t}_{p}^{3} \\
-n_{1} & n_{2} & n_{3} \\
-\left(p_{1}-q_{1}\right) & \left(p_{2}-q_{2}\right) & \left(p_{3}-q_{3}\right)
\end{array}\right| .
$$

The rational ruled bisector surface $\mathfrak{B}(s, t)$ can be constructed as follows:

$$
\mathfrak{B}(s, t)=\mathfrak{B}(s)+t \mathcal{N}(s) ; \text { for } s, t \in I R .
$$

3.2 Bisector Surface Generated by a Point and a Pedal Curve of a Given Timelike Curve in \mathbb{E}_{1}^{3}

Let $\alpha: I \rightarrow \mathbb{E}_{1}^{3}$ be a timelike curve in \mathbb{E}_{1}^{3} and \mathfrak{D} be a developable ruled surface given in \mathbb{E}_{1}^{3}. Thus, for the pedal of \mathfrak{D}, we can write

$$
\begin{equation*}
\mathfrak{T}(s)=\alpha(s)+Q(s) \mathbf{t}_{\alpha}(s),\left\|\mathbf{t}_{\alpha}(s)\right\|=\|\dot{\alpha}(s)\|=1, \tag{3.2.1}
\end{equation*}
$$

where Q is the distance between the points $\alpha(s)$ and $\mathfrak{T}(s),[10]$.
Theorem 3.2 Assume that $\mathfrak{M}=\left(m_{1}, m_{2}, m_{3}\right)$ is a fixed point and \mathfrak{T} is a regular pedal curve of timelike curve. Then the rational ruled bisector surface $\mathfrak{B}_{2}(s, t)$ is

$$
\mathfrak{B}_{2}(s, t)=\mathfrak{B}_{2}(s)+t \mathfrak{N}(s) ; \text { for } s, t \in I R,
$$

where

$$
\begin{aligned}
\mathfrak{N}(s)= & \mathbf{t}_{\mathfrak{T}}(s) \times(\mathfrak{T}(s)-\mathfrak{M}) \\
= & \left(\mathbf{t}_{\mathfrak{T}}^{3}\left(t^{2}-m^{2}\right)-\mathbf{t}_{\mathbf{p}}^{2}\left(t^{3}-m^{3}\right),\right. \\
& \mathbf{t}_{\mathfrak{T}}^{3}\left(t^{1}-m^{1}\right)-\mathbf{t}_{\mathbf{p}}^{1}\left(t^{3}-m^{3}\right), \\
& \left.\mathbf{t}_{\mathfrak{T}}^{1}\left(t^{2}-m^{2}\right)-\mathbf{t}_{\mathbf{p}}^{2}\left(t^{1}-m^{1}\right)\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& b_{1}=\frac{1}{\mathfrak{U}}\left|\begin{array}{ccc}
r^{1} & \mathbf{t}_{\mathfrak{T}}^{2} & \mathbf{t}_{\mathfrak{T}}^{3} \\
r^{2} & n^{2} & n^{3} \\
r^{3} & \left(t^{2}-m^{2}\right) & \left(t^{3}-m^{3}\right)
\end{array}\right|, \\
& b_{2}=\frac{1}{\mathfrak{U}}\left|\begin{array}{ccc}
-\mathbf{t}_{\mathfrak{T}}^{1} & r^{1} & \mathbf{t}_{\mathfrak{T}}^{3} \\
-n^{1} & r^{2} & n^{3} \\
-\left(t^{1}-m^{1}\right) & r^{3} & \left(t^{3}-m^{3}\right)
\end{array}\right|, \\
& b_{3}=\frac{1}{\mathfrak{U}}\left|\begin{array}{ccc}
-\mathbf{t}_{\mathfrak{T}}^{1} & \mathbf{t}_{\mathfrak{T}}^{2} & r^{1} \\
-n^{1} & n^{2} & r^{2} \\
-\left(t^{1}-m^{1}\right) & \left(t^{2}-m^{2}\right) & r^{3}
\end{array}\right|, \\
& \mathfrak{U}=\left|\begin{array}{ccc}
-\mathbf{t}_{\mathfrak{T}}^{1} & \mathbf{t}_{\mathfrak{T}}^{2} & \mathbf{t}_{\mathfrak{T}}^{3} \\
-n^{1} & n^{2} & n^{3} \\
-\left(t^{1}-m^{1}\right) & \left(t^{2}-m^{2}\right) & \left(t^{3}-m^{3}\right)
\end{array}\right| .
\end{aligned}
$$

Proof. Taking the derivative of the eq (3.2.1), we can computed by

$$
\dot{\mathfrak{T}}=\mathbf{t}_{\mathfrak{T}}=(1+\dot{Q}) \mathbf{t}_{\alpha}+Q \kappa_{\alpha} \mathbf{n}_{\alpha}
$$

On the other hand, let \mathfrak{B}_{2} be a bisector point of $\mathfrak{T}(s)$ and \mathfrak{M} with its foot points at $\mathfrak{T}(s)$ and \mathfrak{M}, respectively. Then, it is clear that the point \mathfrak{B}_{2} is contained both the normal plane $\mathcal{L}_{2}\left(s_{0}\right)$ and the bisector plane $\mathcal{L}_{b_{2}}\left(s_{0}\right)$. In that case $\mathcal{L}_{2}\left(s_{0}\right)$ and $\mathcal{L}_{b_{2}}\left(s_{0}\right)$ intersect in a line $l_{2}\left(s_{0}\right)$.

Assume that $\mathfrak{N}(s)$ is the direction vector of $l_{2}(t)$, then it is clear that $\mathfrak{N}(s)$ is contained in both $\mathcal{L}_{2}(s)$ and $\mathcal{L}_{b_{2}}(s)$ and it is orthogonal to the normal vectors of $\mathcal{L}_{2}(s)$ and $\mathcal{L}_{b_{2}}(s)$. Therefore, the following equation can be written easily

$$
\begin{aligned}
\mathfrak{N}(s)= & \mathbf{t}_{\mathfrak{T}}(s) \times(\mathfrak{T}(s)-\mathfrak{M}) \\
= & \left(\mathbf{t}_{\mathfrak{T}}^{3}\left(t^{2}-m^{2}\right)-\mathbf{t}_{\mathbf{p}}^{2}\left(t^{3}-m^{3}\right),\right. \\
& \mathbf{t}_{\mathfrak{T}}^{3}\left(t^{1}-m^{1}\right)-\mathbf{t}_{\mathbf{p}}^{1}\left(t^{3}-m^{3}\right), \\
& \left.\mathbf{t}_{\mathfrak{T}}^{1}\left(t^{2}-m^{2}\right)-\mathbf{t}_{\mathbf{p}}^{2}\left(t^{1}-m^{1}\right)\right),
\end{aligned}
$$

which is a rational vector field.
An auxiliary plane $(\mathcal{A P}) \mathcal{L}_{n_{2}}(s)$ is orthogonal to the intersection line $l_{2}(s)$ and passes through the fixed point \mathfrak{M}. So $\mathfrak{B}_{2}(s)$ is the closest point of $l_{2}(s)$ to $Q, \mathcal{A P}$ can be written as:

$$
\mathfrak{L}_{n_{2}}(s): \quad\left\langle\mathfrak{B}_{2}-\mathfrak{M}, \mathfrak{N}(s)\right\rangle=0 .
$$

If the above equations are considered together, we obtain the following equations for intersection point \mathfrak{B}_{2} :

$$
\begin{aligned}
\left\langle\mathfrak{B}_{2}, \dot{\mathfrak{T}}(s)\right\rangle & =\langle\mathfrak{T}(s), \dot{\mathfrak{T}}(s)\rangle \\
\left\langle\mathfrak{B}_{2}, \mathfrak{N}(s)\right\rangle & =\langle\mathfrak{M}, \mathfrak{N}(s)\rangle \\
\left\langle\mathfrak{B}_{2}, \mathfrak{T}(s)-\mathfrak{M}\right\rangle & =\frac{1}{2}\left(\|\mathfrak{T}(s)\|^{2}-\|\mathfrak{M}\|^{2}\right)
\end{aligned}
$$

Then, we have the following matrix equation,

$$
\left[\begin{array}{ccc}
-\mathbf{t}_{\mathfrak{T}}^{1} & \mathbf{t}_{\mathfrak{T}}^{2} & \mathbf{t}_{\mathfrak{T}}^{3} \tag{3.2.2}\\
-n^{1} & n^{2} & n^{3} \\
-\left(t^{1}-m^{1}\right) & \left(t^{2}-m^{2}\right) & \left(t^{3}-m^{3}\right)
\end{array}\right]\left[\begin{array}{c}
b^{1} \\
b^{2} \\
b^{3}
\end{array}\right]=\left[\begin{array}{c}
r^{1} \\
r^{2} \\
r^{3}
\end{array}\right]
$$

where

$$
\begin{aligned}
r^{1} & =-t^{1} \mathbf{t}_{\mathfrak{T}}^{1}+t^{2} \mathbf{t}_{\mathfrak{T}}^{2}+t^{3} \mathbf{t}_{\mathfrak{T}}^{3} \\
r^{2} & =-m^{1} n^{1}+m^{2} n^{2}+m^{3} n^{3} \\
r^{3} & =\frac{1}{2}\left(\|\mathfrak{T}(s)\|^{2}-\|\mathfrak{M}\|^{2}\right)
\end{aligned}
$$

If eq. (3.2.2) can be solved, then following equation is obtained by

$$
\begin{gathered}
b_{1}=\frac{1}{\mathfrak{U}}\left|\begin{array}{ccc}
r^{1} & \mathbf{t}_{\mathfrak{F}}^{2} & \mathbf{t}_{\mathfrak{T}}^{3} \\
r^{2} & n^{2} & n^{3} \\
r^{3} & \left(t^{2}-m^{2}\right) & \left(t^{3}-m^{3}\right)
\end{array}\right|, \\
b_{2}=\frac{1}{\mathfrak{U}}\left|\begin{array}{ccc}
-\mathbf{t}_{\mathfrak{F}}^{1} & r^{1} & \mathbf{t}_{\mathfrak{T}}^{3} \\
-n^{1} & r^{2} & n^{3} \\
-\left(t^{1}-m^{1}\right) & r^{3} & \left(t^{3}-m^{3}\right)
\end{array}\right|,
\end{gathered}
$$

$$
b_{3}=\frac{1}{\mathfrak{U}}\left|\begin{array}{ccc}
-\mathbf{t}_{\mathfrak{T}}^{1} & \mathbf{t}_{\mathfrak{T}}^{2} & r^{1} \\
-n^{1} & n^{2} & r^{2} \\
-\left(t^{1}-m^{1}\right) & \left(t^{2}-m^{2}\right) & r^{3}
\end{array}\right|
$$

where \mathfrak{U} is

$$
\left|\begin{array}{ccc}
-\mathbf{t}_{\mathfrak{T}}^{1} & \mathbf{t}_{\mathfrak{T}}^{2} & \mathbf{t}_{\mathfrak{T}}^{3} \\
-n^{1} & n^{2} & n^{3} \\
-\left(t^{1}-m^{1}\right) & \left(t^{2}-m^{2}\right) & \left(t^{3}-m^{3}\right)
\end{array}\right|
$$

The rational ruled bisector surface $\mathfrak{B}_{2}(s, t)$ can be constructed as follows:

$$
\mathfrak{B}_{2}(s, t)=\mathfrak{B}_{2}(s)+t \mathfrak{N}(s) ; \text { for } s, t \in I R
$$

3.3 Application

Let us consider a unit speed timelike curve in \mathbb{E}_{1}^{3} by

$$
\begin{equation*}
\alpha=\alpha(s)=(\sqrt{2} s, \cos s, \sin s) \tag{3.3.1}
\end{equation*}
$$

One can calculate its Frenet-Serret apparatus as the following, [9],

$$
\begin{aligned}
\mathbf{t}(s) & =(\sqrt{2},-\sin s, \cos s) \\
\mathbf{n}(s) & =(0,-\cos s,-\sin s) \\
\mathbf{b}(s) & =(-1, \sqrt{2} \sin s,-\sqrt{2} \cos s)
\end{aligned}
$$

Then, the curvatures of α is given by

$$
\begin{aligned}
\kappa(s) & =1 \\
\tau(s) & =\sqrt{2}
\end{aligned}
$$

On the other hand, $\mathcal{P}(s)$ parallel curve of a timelike $\alpha(s)$ curve with parametrized by arc-length in \mathbb{E}_{1}^{3} obtained as follows

$$
\begin{equation*}
\mathcal{P}(s)=(\sqrt{2} s-2,2 \cos s+2 \sqrt{2} \sin s, 2 \sin s-2 \sqrt{2} \cos s) \tag{3.3.2}
\end{equation*}
$$

where we choose $t=\sqrt{5}$. Taking the derivative of the eq. (3.3.2), we can computed by

$$
\mathcal{P}(s)=\mathbf{t}_{\mathbf{P}}=(\sqrt{2},-2 \sin s+2 \sqrt{2} \cos s, 2 \cos s+2 \sqrt{2} \sin s)
$$

Now, if we choose $Q=(-2,2,2)$ be a fixed point in \mathbb{E}_{1}^{3}, the direction vector $\mathcal{N}(s)$ of the intersection line $l(t)$ between two planes $\mathcal{L}(s)$ and $\mathcal{L}_{b}(s)$ obtained by

$$
\begin{aligned}
\mathcal{N}(s)= & (12-(4-4 \sqrt{2}) \cos s-(4+4 \sqrt{2}) \sin s \\
& 2 \sqrt{2}+(4+2 \sqrt{2} s) \cos s-(2 \sqrt{2}-4 s) \sin s \\
& -2 \sqrt{2}+(2 \sqrt{2}-4 s) \cos s+(4+2 \sqrt{2} s) \sin s)
\end{aligned}
$$

The intersection point $\mathfrak{B}=\left(b_{1}, b_{2}, b_{3}\right)$ of three planes: $\mathcal{L}(s), \mathcal{L}_{n}(s)$, and $\mathcal{L}_{b}(s)$ can be computed by solving the following simultaneous linear equations in \mathfrak{B} :

$$
\begin{aligned}
\left\langle\mathfrak{B}, \mathbf{t}_{\mathbf{p}}(s)\right\rangle & =r_{1}, \\
\langle\mathfrak{B}, \mathcal{N}(s)\rangle & =r_{2}, \\
\langle\mathfrak{B}, \mathcal{P}(s)-Q\rangle & =r_{3},
\end{aligned}
$$

where

$$
\begin{aligned}
r_{1} & =\left\langle\mathcal{P}(s), \mathbf{t}_{\mathbf{p}}(s)\right\rangle \\
r_{2} & =\langle Q, \mathcal{N}(s)\rangle \\
r_{3} & =\frac{1}{2}\left(\|\mathbf{P}(s)\|^{2}-\|Q\|^{2}\right)
\end{aligned}
$$

Then, by Cramer's rule, eq. (3.3.3) can be solved as follows:

$$
\begin{aligned}
& b_{1}= \frac{1}{\mathfrak{J}}\left[r_{2}(12+(-4+4 \sqrt{2}) \cos s+(-4+4 \sqrt{2}) \sin s)\right. \\
&+n_{2}((-10+4 \sqrt{2} s-4 \sqrt{2}+2 s) \cos s+(2 \sqrt{2} \\
&+2 \sqrt{2} s-4 s-8) \sin s+4 s-4 \sqrt{2})+n_{3}((4 s+8 \\
&-2 \sqrt{2}-2 \sqrt{2} s) \cos s+(4 \sqrt{2} s-10-4 \sqrt{2}+2 s) \sin s \\
&-4 s+4 \sqrt{2})] \\
& b_{2}=\quad \frac{1}{\mathfrak{J}}\left[n_{1}((-10-4 \sqrt{2}+2 s+4 \sqrt{2} s) \cos s-(8-2 \sqrt{2}\right. \\
&+4 s-2 \sqrt{2} s) \sin s-4 \sqrt{2}+4 s)+r_{2}((4+2 \sqrt{2} s) \cos s \\
&-(2 \sqrt{2}-4 s) \sin s+2 \sqrt{2})+n_{3}(4+\sqrt{2}-4 s-\sqrt{2} s \\
&\left.\left.+2 \sqrt{2} s^{2}\right)\right] \\
& b_{3}=\quad \begin{array}{l}
\frac{1}{\mathfrak{J}}[
\end{array} n_{1}((8-2 \sqrt{2}+4 s-2 \sqrt{2} s) \cos s-(10+4 \sqrt{2}-2 s \\
&-4 \sqrt{2} s) \sin s-4 s+4 \sqrt{2})+n_{2}(-4-\sqrt{2}+4 s+\sqrt{2} s \\
&-\left.\left.2 \sqrt{2} s^{2}\right)+r_{2}((2 \sqrt{2}-4 s) \cos s+(4+2 \sqrt{2} s) \sin s-2 \sqrt{2})\right]
\end{aligned}
$$

where

$$
\begin{aligned}
\begin{aligned}
\mathfrak{J}=-[-\quad & 12+(4-4 \sqrt{2}) \cos s+(4+4 \sqrt{2}) \sin s]^{2} \\
& +[2 \sqrt{2}+(4+2 \sqrt{2} s) \cos s-(2 \sqrt{2}-4 s) \sin s]^{2} \\
& +[-2 \sqrt{2}+(2 \sqrt{2}-4 s) \cos s+(4+2 \sqrt{2} s) \sin s]^{2} \\
& \\
r_{2}= & 24+(12 \sqrt{2}-8 s+4 \sqrt{2} s) \cos s+(-12 \sqrt{2}+8 s+4 \sqrt{2} s) \sin s \\
n_{1}= & 12-(4-4 \sqrt{2}) \cos s-(4+4 \sqrt{2}) \sin s \\
n_{2}= & 2 \sqrt{2}+(4+2 \sqrt{2} s) \cos s+(-2 \sqrt{2}+4 s) \sin s \\
n_{3}= & -2 \sqrt{2}+(2 \sqrt{2}-4 s) \cos s+(4+2 \sqrt{2} s) \sin s
\end{aligned}
\end{aligned}
$$

Then, the rational ruled bisector surface $\mathfrak{B}(s, t)$ can be constructed as follows:

$$
\mathfrak{B}(s, t)=\mathfrak{B}(s)+t \mathcal{N}(s) ; \text { for } s, t \in I R
$$

Received June 21, 2017; Accepted July 21, 2017

References

[1] A. Akutagawa, S. Nishikawa, The Gauss Map and Spacelike Surface with Prescribed Mean Curvature in Minkowski 3-Space, Tohoku Math. J., 42 (1990), 67-82.
[2] V. Chrastinova, Parallel Curves in Three-Dimensional Space, Sbornik 5. Konference o Matematice a Fyzice, (2007), UNOB.
[3] M. Dede, The Bisector Surface of Rational Space Curves in Minkowski 3-Space, Int. Jour. of Math. Comb., 2 (2013), 84-89.
[4] G. Elber, K. Myung-Soo, The Bisector Surface of Rational Space Curves, ACM Transactions on Grap., 17 (1998), 32-49.
[5] G. Elber, M.S. Kim, A Computational Model for Nonrational Bisector Surfaces: CurveSurface and Surface-Surface Bisectors, (2000), 364-372.
[6] R.Farouki, J. Johnstone, Computing Point/Curve and Curve/Curve Bisector, Des. And App. Curv. and Surf., Oxford Univ. Press, 1994, 327-354.
[7] R. Farouki, J. Johnstone, The Bisector of a Point and Plane Parametric Curve, Comp. Aid. Geo. Des., 11(2) (1994), 117-151.
[8] A.G. Horvath, Bisectors in Minkowski 3-space, Sci.Reseach J.Bolyai, (2000).
[9] E. İyigün, The Tangent Spherical Image and ccr-Curve of a Timelike Curve in \mathbb{L}^{3}, Jour. Ineq. App., 1(55) (2013).
[10] E. Kasap, A. Saraoğlugil, N. Kuruoğlu, The Pedal Cone Surface of a Developable Ruled Surface, Int. J. Pure and App. Mat., 2 (19) (2005), 157-164.
[11] R. López, J. Pyo, Spacelike Surfaces with Free Boundary in the Lorentz-Minkowski Space, Classical and Quantum Gravity., 29(3) (2012), doi: 10.1088/0264-9381/29/3/035005.
[12] R. López, Constant Mean Curvature Surfaces Foliated by Circles in Lorentz-Minkowski Space, Geometriae Dedicata., 76 (1) (1999), 81-95.
[13] B. O'Neill, Semi Riemannian Geometry, Academic Press, New York, 1983.
[14] T. Körpınar, E.Turhan, Time Evolution Equations for Surfaces Generated via Binormal Spherical Image in Terms of Inextensible Flows, Journal of Dynamical Systems and Geometric Theories. 12 (2014), 145-157.
[15] T. Körpınar, E.Turhan, V. Asil, Tangent Bishop Spherical Images of a Biharmonic B-Slant Helix in the Heisenberg Group Heis ${ }^{3}$. Iranian Journal of Science and Technology Transaction A: Science 35 (2012), 265-271.
[16] T. Körpınar, On the Fermi Walker Derivative for Inextensible Flows, Zeitschrift für Naturforschung A- A Journal of Physical Sciences. 70a (2015), 477-482.
[17] T. Körpınar, E.Turhan,Time-Tangent Surfaces Around Biharmonic Particles and Its Lorentz Transformations in Heisenberg Spacetime. Int. J. Theor. Phys. 52 (2013), 4427-4438.
[18] T. Körpınar, Bianchi Type-I Cosmological Models for Inextensible Flows of Biharmonic Particles by Using Curvature Tensor Field in Spacetime, Int J Theor Phys. 54 (2015), 1762-1770.
[19] T. Körpinar, New Characterization of b-m2 Developable Surfaces, Acta Scientiarum. Technology, 37, 245-250. (2015).
[20] T. Körpınar, A New Method for Inextensible Flows of Timelike Curves in 4-Dimensional LP-Sasakian Manifolds, Asian-European Journal of Mathematics, 8 DOI: 10.1142/S1793557115500734, 2015.
[21] T. Körpınar, B-Tubular Surfaces in Lorentzian Heisenberg Group H3, Acta Scientiarum. Technology 37 (2015), 63-69.

[^0]: ${ }^{1}$ Correspondence: Vedat Asil. E-mail: vedatasil@gmail.com

